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1. Overview

In the past three decades research on Krylov subspace techniques for solv-
ing linear systems of equations has brought forth a variety of algorithms
and methods so large that even specialists in matrix computations have
difficulties keeping up. This situation is all the more confusing for scient-
ists whose main interests lie elsewhere when faced with choosing among the
many approaches for solving a linear system, or merely attempting to obtain
an overview of the methods and how they are related. This state of affairs
applies not only to the methods themselves, but also to many theoretical
results obtained time and again for each individual method.

It is our objective in this paper to develop the theory and algorithms on
which all Krylov subspace methods are based through several layers of ab-
straction, proceeding from the most general to the most specific and leading
to Krylov subspace methods in the form in which they are currently used.
We have found several advantages to this approach. First, by obtaining each
result in as general a setting as possible, it is easier to distinguish properties
unique to Krylov subspace methods from those which these methods inherit
as, say, projection methods or subspace correction methods. We will indeed
see that many results on Krylov subspace methods hold in greater gener-
ality than usually stated, and that many computational elements of these
methods can be translated with little modification to more general methods.
Second, our approach emphasizes the common origin of all Krylov subspace
methods and we have found this approach an elegant yet simple way of
presenting this theory, tying together in a consistent and natural framework
many results that are otherwise difficult to relate. Finally, we have found
that this way of developing Krylov subspace theory offers a new and insight-
ful perspective and is accessible to any reader familiar with only basic facts
about inner product spaces.

In the literature on Krylov subspace techniques for solving linear systems
of equations, two principal methods have emerged as the basis for most
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algorithms: these are the minimal residual (MR) and the orthogonal residual
(OR) approaches. Both methods select an approximation to the solution of
the linear system from a shifted Krylov space. The former does this in
such a way that the resulting residual norm is minimized, whereas the latter
chooses the approximation such that the associated residual is orthogonal
to the Krylov space. The following is a list of the most widely used MR/OR
pairs:

• the conjugate residual (CR)/conjugate gradient (CG) methods for Her-
mitian definite systems (Hestenes and Stiefel 1952)

• the minimal residual method (MINRES)/CG methods for Hermitian
indefinite systems (Paige and Saunders 1975)

• the full orthogonalization method (FOM)/generalized minimal residual
method (GMRES) for the non-Hermitian case (Saad 1981, Saad and
Schultz 1986)

• the biconjugate gradient (BCG)/quasi-minimal residual (QMR) meth-
ods (QMR) for non-Hermitian problems (Lanczos 1952, Freund and
Nachtigal 1991)

• conjugate gradients squared (CGS)/transpose-free QMR (TFQMR) for
non-Hermitian problems (Sonneveld 1989, Freund 1993),

where the last two pairs of methods require us to define orthogonality with
respect to a problem-dependent inner product, a matter which will be dis-
cussed in detail in Sections 4 and 5.

Expositions of these and other Krylov subspace methods can be found,
for instance, in the monographs of Hageman and Young (1981), Axelsson
(1994), Bruaset (1995), Fischer (1996), Saad (1996), Greenbaum (1997),
Weiss (1997), and Meurant (1999). In addition, there are also several
survey papers with differing emphases, among which we mention those of
Ashby, Manteuffel and Saylor (1990), Freund, Golub and Nachtigal (1992),
Gutknecht (1997), Golub and van der Vorst (1997) and van der Vorst and
Saad (2000).

In what follows, H denotes a Hilbert space with inner product (·, ·) and
associated norm ‖ · ‖. By A : H → H, we always denote an invertible
bounded linear operator. Krylov subspace methods for solving a linear op-
erator equation

Ax = b (1.1)

begin with an initial approximation x0 of x = A−1b and at each step m =
1, 2, . . . attempt to construct an improved approximation xm = x0 + cm by
adding a correction cm from the Krylov space

Km(A, r0) := span{r0, Ar0, . . . , A
m−1r0}
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of order m with respect to A and the initial residual r0 = b − Ax0. The
MR approach determines the correction cMR

m in such a way that the associ-
ated residual is minimized, that is,

‖b −AxMR
m ‖ = ‖r0 −AcMR

m ‖ = min
c∈Km(A,r0)

‖r0 −Ac‖, (1.2a)

while the OR approach determines the correction from the Galerkin condi-
tion

b −AxOR
m = r0 −AcOR

m ⊥ Km(A, r0). (1.2b)

In contrast to the MR approximation, there are situations where the OR
approximation may not exist or may not be uniquely determined and these
are discussed below.

The Krylov subspace MR and OR methods are special cases of the more
general subspace correction methods: given an arbitrary correction space Cm

of dimension m, determine cMR
m and cOR

m such that

‖r0 −AcMR
m ‖ = min

c∈Cm

‖r0 −Ac‖ (1.3a)

and

r0 −AcOR
m ⊥ Vm, (1.3b)

respectively, for some suitable m-dimensional test space Vm. Letting Wm :=
ACm denote the image of the correction space under A, we can reformulate
(1.3a) and (1.3b) as the task of determining wMR

m ,wOR
m ∈ Wm such that

‖r0 −wMR
m ‖ = min

w∈Wm

‖r0 −w‖ (1.4a)

and

r0 −wOR
m ⊥ Vm. (1.4b)

The solutions of (1.4a) and (1.4b) are, of course, given by the orthogonal
projection wMR

m = PWm
r0 of r0 onto Wm and the oblique projection wOR

m =

PVm

Wm
r0 of r0 onto Wm orthogonal to Vm, respectively. In view of (1.4a) and

(1.4b), the MR and OR approaches consist of approximating r0 ∈ H in the
space Wm by its orthogonal and oblique projections onto Wm.

In the following section we shall determine what can be said about the
approximation of an arbitrary element in H by its orthogonal and oblique
projections with respect to given spaces W and V of equal (finite) dimension.
We then consider such approximations with respect to nested sequences of
spaces {Wm}m≥0 and {Vm}m≥0 and show that all the well-known relations
between Krylov subspace MR and OR approximations and their residuals
already hold in this abstract setting of approximation by orthogonal and
oblique projection. The source of these relations is thereby seen to lie in
the properties of orthogonal and oblique projections on a nested sequence of
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subspaces, where the oblique projection is orthogonal to the previous error
space (which we shall call residual space to emphasize its Krylov subspace
correspondence). In particular, these relations are not restricted to Krylov
spaces, or even to solving equations.

In the usual implementations, the Krylov MR/OR approximations are
computed by solving a small least-squares problem or linear system, re-
spectively, involving a tridiagonal or Hessenberg matrix at each step. This
is done by maintaining a QR factorization of this Hessenberg matrix which
is updated at each step using Givens rotations. Due to the Hessenberg struc-
ture, only one Givens rotation is required at each step, and the angles of
these rotations can be used to characterize the OR and MR residual norms
and also to express the iterates and residuals in terms of each other.

In our abstract setting, these relations are derived using only the notion
of angles between the spaces which define the orthogonal and oblique pro-
jections. The sines and cosines occurring in these expressions are therefore
not mere artifacts of the computational scheme for the MR and OR ap-
proximations, but have an intrinsic meaning. It is this intrinsic relationship
between the orthogonal and oblique projections that is at the root of the
often observed close relationship between MR and OR approximations.

We further discuss the relation between MR and quasi-minimal resid-
ual (QMR) approximations. The latter is also obtained by solving a least-
squares problem in coordinate space, the only difference to the MR approx-
imation being that these coordinates are with respect to a non-orthogonal
basis. We show that QMR approximations become MR approximations
if only the inner product is appropriately chosen. Again, the QMR ap-
proximation can be defined in our abstract setting and then has a structure
identical to the MR approximation. This distinction between MR and QMR
approximations via different inner products also extends to OR and quasi-
orthogonal residual (QOR) approximations; in fact, we show that essentially
any Krylov subspace method for solving a linear system can be classified as
both an MR or OR method by appropriate choice of the inner product.

In Section 2 we cast the MR and OR approximations to the solution of an
operator equation as abstract approximation problems or, equivalently, as an
orthogonal and oblique projection method, respectively. In contrast to the
orthogonal projection, there are situations in which the oblique projection,
and hence the OR approximation, may not exist. A useful characterization
of the oblique projection as the Moore–Penrose inverse of the product of
two orthogonal projections leads to a canonical way of defining an OR ap-
proximation in case of such a breakdown. We characterize the conditions
under which the oblique projection exists and relate the norm of the oblique
projection to the angle between two subspaces.

Section 3 specializes the spaces characterizing the projections to two se-
quences of closely related nested spaces. It is shown that, under these general
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conditions, all the well-known relations among OR/MR pairs such as FOM/
GMRES can be derived. These results also elucidate the theory behind
residual smoothing techniques.

Section 4 explores the coordinate calculations required to compute the
MR and OR approximations with respect to orthogonal and non-orthogonal
bases of the underlying spaces. These involve solving least-squares problems
and linear systems with a Hessenberg matrix. When a QR-factorization
based on Givens rotations is used to solve these problems, the angles char-
acterizing the Givens rotations are identified as the angles between these
subspaces. Moreover, it is shown that methods based on non-orthogonal
bases can be characterized as MR/OR methods with respect to a different,
basis-dependent inner product. We further characterize the QMR and QOR
approximations as oblique projections with respect to the original inner
product and conclude with a characterization for when the QMR approxim-
ation coincides with the MR approximation.

Section 5 specializes the spaces yet further to Krylov subspaces and their
images under the operator A. We recover familiar Krylov subspace al-
gorithms and show that our framework covers all Krylov subspace methods.

In Section 6 we show how angles between subspaces may be used to derive
known residual and error bounds for MR and OR methods and include an
application to compact perturbations of the identity.

Final remarks and conclusions are given in Section 7.

2. Approximations, projections and angles

Here we consider two basic methods for approximating a vector r0 ∈ H by
an element w from a subspace W ⊂ H and recall their well-known relations
to projections and angles. Although the results in this and the following
two sections make no reference to solving equation (1.1), we will, of course,
ultimately make this connection. In order to avoid changing notation at
that point, however, we adopt the notation and terminology of equation
solving from the beginning. Thus we denote the (for now arbitrary) vector
to be approximated by r0, since this role will later be played by the residual
vector associated with an initial guess x0 for A−1b. Similarly, we denote
the associated approximation error r0 −w by r , as it will coincide with the
residuals r = b − A(x0 + c) = r0 − Ac of subsequent correction vectors c

in the equation-solving context (i.e., w is then of the form w = Ac).
Given an arbitrary finite-dimensional subspace W ⊂ H and an element

r0 ∈ H, we define its MR approximation wMR as the best approximation of
r0 from W and denote by rMR the associated error

wMR := PWr0, rMR := r0 −wMR = (I − PW)r0 ⊥ W,

where PW is the orthogonal projection onto W. The distance between r0
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and its best approximation PWr0 in W can be described in terms of angles
between vectors and subspaces of H. The angle ∡(x ,y) between two non-
zero elements x ,y ∈ H is defined by the relation

cos ∡(x ,y) :=
|(x ,y)|
‖x‖ ‖y‖ ,

which, in view of the Cauchy–Schwarz inequality, uniquely determines the
number ∡(x ,y) ∈ [0, π/2]. We note here that the natural definition of the
angle would replace the modulus in the numerator by the real part; our
definition, however, is more appropriate for comparing subspaces (see also
the discussion of this issue in Davis and Kahan (1970, p. 9)). Similarly, we
define the angle between a nonzero vector x ∈ H and a subspace U ⊂ H,
U �= {0}, as

∡(x ,U) := inf
0�=u∈U

∡(x ,u), i.e., cos ∡(x ,U) = sup
0�=u∈U

cos ∡(x ,u).

Further, we define the sine of this angle as

sin ∡(x ,U) :=
√

1 − cos2 ∡(x ,U).

The connection between angles and orthogonal projections is given in the
following lemma, a proof of which can be found in Wedin (1983), for example.

Lemma 2.1. Let U be a finite-dimensional subspace of H and let PU de-
note the orthogonal projection onto U. For each x ∈ H we have

∡(x ,U) = ∡(x , PUx ) (2.1)

and, as a consequence,

‖PUx‖ = ‖x‖ cos ∡(x ,U), (2.2)

‖(I − PU)x‖ = ‖x‖ sin ∡(x ,U). (2.3)

In light of this result, the distance between r0 and its MR approximation
wMR may be expressed as

‖rMR‖ = ‖r0 −wMR‖ = ‖(I − PW)r0‖ = ‖r0‖ sin ∡(r0,W). (2.4)

In order to define the OR approximation in this abstract setting we require
a further finite-dimensional subspace V ⊂ H to formulate the orthogonality
constraint. The OR approximation wOR ∈ W of r0 is then defined by the
requirement

wOR ∈ W, r0 −wOR ⊥ V.

Of course, since choosing V = W yields the MR approximation, the latter
is just a special case of the OR approximation. We choose nonetheless to
distinguish the two, both for historical reasons and for ease of exposition.
Existence and uniqueness of wOR are summarized in the following result.
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Lemma 2.2. If V,W are subspaces of the Hilbert space H and r0 ∈ H,
then

(a) there exists w ∈ W such that r0 −w ⊥ V if and only if r0 ∈ W + V⊥;

(b) such a w is unique if and only if W ∩ V⊥ = {0}.
Thus, a unique OR approximation is defined for any r0 ∈ H whenever

H = W ⊕ V⊥. In this case wOR is the oblique projection of r0 onto W

orthogonal to V (or, equivalently, along V⊥), which we denote by PV

W
: H →

W, and wOR is characterized by

wOR = PV

Wr0, rOR = r0 −wOR = (I − PV

W)r0 ⊥ V.

When it exists, the oblique projection PV

W
is given by the Moore–Penrose

inverse (PVPW)+ of PVPW (cf. Wedin (1983)). This is established in the
following two lemmas, the first of which describes the mapping properties
of (PVPW)+.

Lemma 2.3. Given two finite-dimensional subspaces V and W of the Hil-
bert space H, let S := (PVPW)+ denote the Moore–Penrose inverse of the
product of the orthogonal projections onto W and V. Then S is a projection
and we have

range(S) = W ∩ (V + W
⊥), (2.5)

null(S) = V
⊥ + (W⊥ ∩ V). (2.6)

Proof. The proof of the projection property S2 = S follows along the lines
of Greville (1974, Theorem 1). First, since P := PVPW has finite rank,
its Moore–Penrose pseudo-inverse P+ = S exists and satisfies range(P+) =
range(P ∗), from which it follows that

range(S) ⊂ range(PW), range(S∗) ⊂ range(PV),

and hence, by the idempotency of PV and PW,

PWS = S, SPV = S,

which together imply S2 = SPVPWS = P+PP+ = P+ = S.
Since range(S) = range((PVPW)∗) = range(PWPV) and analogously for

the null space, it is sufficient to show (2.5) and (2.6) for the operator PWPV

instead of S. To derive (2.5), note that w ∈ W lies in range(PWPV) if and
only if there exists v ∈ V such that v = w + w⊥ for some w⊥ ∈ W⊥, which
in turn is equivalent to w ∈ W ∩ (V + W⊥). To see (2.6), note that any
x ∈ H may be written as x = (w + w⊥) + v⊥ with w ∈ W, w⊥ ∈ W⊥,
v⊥ ∈ V⊥, and w + w⊥ ∈ V. Thus, x ∈ null(PWPV) if and only if w = 0 or,
equivalently, x ∈ V⊥ + (W⊥ ∩ V). �
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Lemma 2.4. Given two finite-dimensional subspaces V and W of the Hil-
bert space H such that H = W ⊕ V⊥, the oblique projection PV

W
onto W

orthogonal to V is given by

PV

W = (PVPW)+. (2.7)

Proof. By the previous lemma, S is a projection and, in view of V+W⊥ =
(V⊥ ∩W)⊥, W⊥ ∩V = (W + V⊥)⊥, and H = W⊕V⊥, its range is W and its
null space is V⊥, which together characterize it as PV

W
. �

Remark 2.5. We note that, while the left-hand side of (2.7) exists only
under the condition H = W ⊕ V⊥, the right-hand side is always defined.
Thus, (PVPW)+r0 can be viewed as a natural way of defining an OR ap-
proximation in those cases where this direct sum condition fails to hold, a
situation sometimes referred to, in the context of Krylov subspace methods,
as a Galerkin breakdown.

As is to be expected, the error rOR = r0 − PV

W
r0 depends on the angles

between the subspaces V and W, which we introduce as follows (cf. Golub
and Van Loan (1996, Section 12.4.3)): Given two finite-dimensional sub-
spaces V and W of H, let m := min(dimV, dim W). The canonical or prin-
cipal angles {θj}mj=1 between V and W are defined recursively by

cos θj := max
0�=v∈V

max
0�=w∈W

|(v ,w)|
‖v‖ ‖w‖ =:

|(vj ,wj)|
‖vj‖ ‖wj‖

subject to v ⊥ v1, . . . , vj−1 and w ⊥ w1, . . . ,wj−1. We further define the
angle between the spaces V and W as the largest canonical angle

∡(V,W) := θm.

Remark 2.6. If PVPW =
∑m

j=1 σj(·,wj)vj is a singular value decomposi-
tion of PVPW, then the variational characterization of the singular values,

σj(PVPW) = max
v∈V,w∈W

|(PVPWw , v)|
‖w‖ ‖v‖ =:

|(PVPWwj , vj)|
‖wj‖ ‖vj‖

subject to v ⊥ v1, . . . , vj−1, w ⊥ w1, . . . ,wj−1 for j = 1, . . . ,m (cf. Björck
and Golub (1973)), shows immediately that cos θj = σj . Furthermore, we
note that, given any two orthonormal bases {vj}dim V

j=1 and {wj}dim W
j=1 of V

and W, then the cosines of the canonical angles are the singular values of
the matrix of inner products [(vj ,wk)]j=1,...,dim V,k=1,...,dim W (cf. Chatelin
(1993)).

Remark 2.7. As a consequence of Remark 2.6, we see that S = (PVPW)+

can be written as

S =

m∑

j=1

σ+
j (·, vj)wj with σ+

j :=

{
1/σj , if σj > 0,

0, otherwise.
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In particular, we have

range(S) = span{wj : σj > 0}, null(S) = span{vj : σj > 0}⊥.
Thus, we have range(S) = W if and only if dim(W) = m and σj > 0 for all
j = 1, . . . ,m. Similarly, null(S) = V⊥ if and only if dim(V) = m and σj > 0
for all j = 1, . . . ,m. Consequently, the oblique projection PV

W
exists if and

only if dim(V) = dim(W) and ∡(V,W) < π/2.

Remark 2.8. Two further characterizations of the angle between two sub-
spaces, V and W, are given by

∡(V,W) = max
v∈V,
v �=0

∡(v , PV

Wv)

(see Saad (1982)) and sin∡(V,W) = ‖PV− PW‖ (cf. Chatelin (1993, p. 5)).

Besides the relative position of the spaces V and W, the error of the OR
approximation also depends on the position of r0 with respect to V and
W. In this generality, all we can do to bound the OR approximation error is
determine the norm of the complementary projection I−PV

W
. For simplicity,

since H = W ⊕ V⊥ for finite-dimensional V and W implies dim V = dimW,
we assume that both spaces have the same dimension m < ∞.

The following result was stated in Saad (1982).

Theorem 2.9. Given two m-dimensional subspaces V,W ⊂ H of the Hil-
bert space H such that H = W ⊕ V⊥, let PV

W
: H → W denote the oblique

projection onto W orthogonal to V. Then

‖I − PV

W‖ =
1

cos ∡(V,W)
. (2.8)

Proof. The proof follows from the fact that ‖P‖ = ‖I − P‖ for any non-
trivial projection operator P in a Hilbert space (cf. Kato (1960)). Thus,
letting σmin and σmax denote the smallest and largest singular values of an
operator, we have

‖I − (PVPW)+‖ = ‖(PVPW)+‖ = σmax((PVPW)+) =
1

σmin(PVPW)

and the conclusion follows from Remark 2.6. �

Without further assumptions on r0 and the spaces V and W, all we can
say about the error of the OR approximation is

‖rOR‖ = ‖r0 −wOR‖ = ‖(I − PV

W)r0‖ ≤ ‖r0‖
cos ∡(V,W)

.

As an immediate consequence, noting that

rOR = (I − PV

W)r0 = (I − PV

W)(r0 −w), ∀w ∈ W,
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we obtain

‖rOR‖ ≤ ‖I − PV

W‖ inf
w∈W

‖r0 −w‖ = ‖I − PV

W‖ ‖rMR‖,

an estimate usually referred to as Céa’s lemma in connection with projec-
tion methods (see, e.g., Brenner and Scott (1994)), which, in view of (2.8),
implies

cos ∡(V,W) ‖rOR‖ ≤ ‖rMR‖ ≤ ‖rOR‖.

3. Approximations from nested subspaces

Until now nothing further has been assumed to relate V, W and r0; hence we
were only able to bound the error in the OR approximation in terms of the
angle between the spaces V and W. We will obtain more interesting results in
this section by selecting a specific test space V which differs only slightly from
the approximation space W. This choice, however, is still general enough
to cover all MR and OR methods, in particular Krylov subspace methods.
We now investigate MR and OR approximations on nested sequences of
subspaces, which is the setting in which these approximations are used by
practical algorithms.

3.1. MR approximations

Consider a sequence of nested subspaces

{0} = W0 ⊂ W1 ⊂ · · · ⊂ Wm−1 ⊂ Wm ⊂ · · · (3.1)

of H and assume for simplicity that dimWm = m. Throughout this sec-
tion, {w1, . . . ,wm} will always denote an ascending orthonormal basis of
Wm, that is, one such that {w1, . . . ,wj} forms a basis of Wj for every
j = 1, . . . ,m. In terms of such a basis, the MR approximation, that is, the
best approximation of r0 ∈ H from Wm, can be expressed as the truncated
Fourier expansion

wMR
m = PWm

r0 =

m∑

j=1

(r0,wj)wj = wMR
m−1 + (r0,wm)wm, m ≥ 1,

so that the norm of the associated error rMR
m = r0 −wMR

m is given by

‖rMR
m ‖2 = ‖(I − PWm

)r0‖2 = ‖r0‖2 −
m∑

j=1

|(r0,wj)|2

= ‖rMR
m−1‖2 − |(r0,wm)|2.

(3.2)

Relation (3.2) shows that no improvement in the MR approximation results
whenever the direction in which Wm−1 is enlarged is orthogonal to r0. In
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other words,

‖rMR
m ‖ < ‖rMR

m−1‖ if and only if (r0,wm) �= 0. (3.3)

To relate the approximations on successive spaces, note that for m ≥ 1
we have

wMR
m = wMR

m−1 + PWm
rMR
m−1,

from which it follows that

rMR
m = rMR

m−1 − PWm
rMR
m−1 = (I − PWm

)rMR
m−1. (3.4)

To express successive approximation errors in terms of angles, we note
that (3.4) together with (2.3) yields

‖rMR
m ‖ = ‖(I − PWm

)rMR
m−1‖ = sm ‖rMR

m−1‖, (3.5)

where sm := sin∡(rMR
m−1,Wm). Note that the sine sm is also given by

(cf. (2.4))

sm =
‖rMR

m ‖
‖rMR

m−1‖
=

‖(I − PWm
)r0‖

‖(I − PWm−1
)r0‖

=
sin ∡(r0,Wm)

sin ∡(r0,Wm−1)
, (3.6)

that is, sm is the sine of the angle between the previous approximation error
and Wm or, equivalently, the quotient of the sines of the angles between r0

and the current and previous approximation spaces. In order for the last
three terms in (3.6) to make sense, we assume that r0 �∈ Wm−1; otherwise,
the approximation problem is solved exactly in the space Wm−1 and the
larger spaces no longer contribute toward improving the approximation.

In view of (3.2) and (3.5), the corresponding cosine is given by

cm :=
√

1 − s2
m =

√
1 − ‖rMR

m ‖2

‖rMR
m−1‖2

=
|(r0,wm)|
‖rMR

m−1‖
(3.7)

and we see that an equivalent way of stating (3.3) is

‖rMR
m ‖ < ‖rMR

m−1‖ if and only if cm �= 0. (3.8)

An obvious induction applied to (3.5) leads to the error formula

‖rMR
m ‖ = s1s2 · · · sm ‖r0‖, (3.9)

from which we see that the sequence of approximations will converge to r0

if and only if the product of sines tends to zero. Moreover, if the numbers
sm themselves tend to zero, the convergence of the MR approximations is
superlinear.

3.2. OR approximations

In order to define the OR approximations associated with the nested se-
quence {Wm}m≥0, we fix the sequence {Vm}m≥1 of spaces which define the
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orthogonality condition by setting

Vm := span{r0} + Wm−1, m = 1, 2, . . . . (3.10)

With this definition of Vm, since the mth OR and MR approximations lie
in Wm, the corresponding approximation errors lie in Vm+1. Since these
errors turn out to be residual vectors in the context of subspace correction
methods for solving Ax = b, we shall refer to {Vm}m≥1 as the sequence of
residual spaces.

We first investigate the question of when the OR approximation is well-
defined. In view of Remark 2.7, this amounts to checking whether the angle
between Vm and Wm is strictly less than π/2. As a consequence of the special
choice (3.10) of Vm, it turns out that this angle is the same as ∡(rMR

m−1,Wm).

Theorem 3.1. If the spaces Vm and Wm are related as in (3.10), then the
largest canonical angle between them is given by

∡(Vm,Wm) = ∡(rMR
m−1,Wm). (3.11)

Moreover, the remaining m − 1 canonical angles between Vm and Wm are
zero.

Proof. Noting that {w1, . . . ,wm−1, ŵm}, with ŵm = rMR
m−1/‖rMR

m−1‖, is an
orthonormal basis of Vm, we obtain the cosine of the largest canonical angle
as the smallest singular value of the matrix




(w1,w1) . . . (wm−1,w1) (wm,w1)
...

...
...

(w1,wm−1) . . . (wm−1,wm−1) (wm,wm−1)
(w1, ŵm) . . . (wm−1, ŵm) (wm, ŵm)


 =

[
Im−1 0

0
(wm,r0)

‖rMR

m−1
‖

]

(cf. Remark 2.6). Thus the smallest singular value is |(wm, r0)|/‖rMR
m−1‖ =

cm (cf. (3.7)) and all remaining singular values are equal to one. �

As an immediate consequence of Theorem 3.1, we obtain the following
characterization of when the oblique projection PVm

Wm
is defined for our spe-

cific choice of Vm.

Corollary 3.2. The OR approximation of an arbitrary r0 ∈ H with re-
spect to the sequence of spaces Vm and Wm as given by (3.1) and (3.10) is
uniquely defined if and only if (r0,wm) �= 0, that is, if and only if the MR
approximation improves as Wm−1 is enlarged to Wm.

Thus the degenerate case in which the OR approximation is not uniquely
defined for all r0 ∈ H and for which the MR approximation makes no
progress is characterized by cm = 0. We thus tacitly assume (r0,wm) �= 0
whenever mentioning the OR approximation of index m.
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In many algorithms such as GMRES it is convenient to work also with
an ascending basis {v1, . . . , vm} of Vm. The following result, which will be
used in Section 6.4, relates ∡(r0,wm) with ∡(vm+1,wm).

Lemma 3.3. If the subspaces Vm and Wm are related by (3.10) and
{v1, . . . , vm} and {w1, . . . ,wm} are ascending orthonormal bases of Vm and
Wm, respectively, then

|(vm+1,wm)| = sm.

In the degenerate case (r0,wm) = 0, the vectors vm+1 and wm must be
collinear.

Proof. From vm+1 ∈ span{r0,w1, . . . ,wm} ∩ span{r0,w1, . . . ,wm−1}⊥ we
conclude vm+1 ∈ span{rMR

m ,wm} and the assertion follows from the remain-
ing requirements ‖vm+1‖ = 1 and vm+1 ⊥ r0: Using the notation from the
proof of Theorem 3.1, we set ŵm+1 := rMR

m /‖rMR
m ‖ and note that {ŵm,wm}

form an orthonormal basis of span{rMR
m ,wm}, hence vm+1 = αŵm + βwm

for some coefficients α, β ∈ C. Since (rMR
m , r0) = ‖rMR

m ‖2, orthogonality of
vm+1 and r0 yields

0 = (vm+1, r0) =
α

‖rMR
m ‖(rMR

m , r0) + β(wm, r0) = α‖rMR
m ‖ + β(wm, r0).

The requirement that vm+1 have unit norm now gives

|β|2 =

(
1 +

|(wm, r0)|2
‖rMR

m ‖2

)−1

=
‖rMR

m ‖2

‖rMR
m ‖2 + |(wm, r0)|2

=
‖rMR

m ‖2

‖rMR
m−1‖2

= s2
m.

Since rMR
m ⊥ wm, we now obtain |(vm+1,wm)| = |β| = sm.

If (r0,wm) = 0 then |(vm+1,wm)| = 1, i.e., |(vm+1,wm)| = ‖vm+1‖ ‖wm‖,
which means that these two vectors are collinear. �

3.3. Relations between MR and OR approximations

Recall that r0 ∈ Wm−1 implies that the MR approximation with respect to
the space Wm−1 solves the approximation problem exactly. The same is true
for the OR approximation, since r0 ∈ Wm−1 implies r0 − rOR

m−1 ∈ Wm−1 ∩
V⊥
m−1 = {0}, so that the OR approximation solves the problem exactly

whenever the MR approximation does. In other words, the assumption
r0 �∈ Wm−1 is equivalent to saying that both rMR

m−1 and rOR
m−1 are not yet

zero.
If we define w̃m := |(wm, r0)|ŵm/(r0,wm), where ŵm = rMR

m−1/‖rMR
m−1‖,

then (wm, w̃m) = cm (cf. the proof of Theorem 3.1). Consequently, the
sets {w1, . . . ,wm} and {w1, . . . ,wm−1, w̃m/cm} form a pair of biorthonormal
bases of Wm and Vm. This fact allows us to express the oblique projection
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which determines the OR approximation as the singular value expansion

PVm

Wm
=

m−1∑

j=1

(·,wj)wj +
1

cm
(·, w̃m)wm, (3.12)

from which we derive the following expression for the difference of the OR
and MR approximations:

wOR
m −wMR

m = (PVm

Wm
− PWm

)r0 =
[
c−1
m (r0, w̃m) − (r0,wm)

]
wm

=
‖rMR

m−1‖2 − |(r0,wm)|2
(wm, r0)

wm =
‖rMR

m ‖2

(wm, r0)
wm.

(3.13)

In other words, since the spaces Vm and Vm are so closely related, the
projection PVm

Wm
is simply a rank-one modification of PWm

and this is the
essential ingredient of the proof for the following familiar relations.

Theorem 3.4. Given an arbitrary element r0 ∈ H, a nested sequence of
subspaces Wm ⊂ H of dimension m (cf. (3.1)) and a corresponding sequence
of error spaces Vm as defined by (3.10), then the MR and OR approximations
of r0 with respect to Wm and Vm satisfy

‖rMR
m ‖ = sm‖rMR

m−1‖, (3.14)

‖rMR
m ‖ = s1s2 · · · sm‖r0‖, (3.15)

‖rMR
m ‖ = cm‖rOR

m ‖, (3.16)

‖rOR
m ‖ = s1s2 · · · sm‖r0‖/cm, (3.17)

where sm = sin ∡(rMR
m−1,Wm) and cm = cos ∡(rMR

m−1,Wm).

Proof. Identities (3.14) and (3.15) are merely restatements of (3.5) and
(3.9), which have already been proved. Next, from (3.13) we obtain

rMR
m − rOR

m = wOR
m −wMR

m ∈ span{wm}, (3.18)

and

wOR
m = wMR

m +
‖rMR

m ‖2

(wm, r0)
wm = wMR

m−1 +
‖rMR

m−1‖2

(wm, r0)
wm, (3.19)

where we have used (3.2) for the last equality. Since rMR
m ⊥ wm, the Py-

thagorean identity and (3.2) yield

‖rOR
m ‖2 =

(
1 +

‖rMR
m ‖2

|(wm, r0)|2
)
‖rMR

m ‖2 =
‖rMR

m−1‖2

|(wm, r0)|2
‖rMR

m ‖2,

which, in view of (3.7), gives the error formula

‖rOR
m ‖ =

‖rMR
m−1‖ ‖rMR

m ‖
|(wm, r0)|

=
1

cm
‖rMR

m ‖
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for the OR approximation, establishing (3.16) and (3.17). �

In addition to the norm identities contained in Theorem 3.4, it is also
possible to relate the MR and OR approximations and their errors, as the
next theorem shows.

Theorem 3.5. Under the assumptions of Theorem 3.4, the MR and OR
approximations and errors satisfy

wMR
m = s2

mwMR
m−1 + c2mwOR

m , (3.20)

rMR
m = s2

mrMR
m−1 + c2mrOR

m , (3.21)

wMR
m

‖rMR
m ‖2

=

m∑

j=0

wOR
j

‖rOR
j ‖2

, (3.22)

rMR
m

‖rMR
m ‖2

=

m∑

j=0

rOR
j

‖rOR
j ‖2

, (3.23)

1

‖rMR
m ‖2

=
m∑

j=0

1

‖rOR
j ‖2

=
1

‖rMR
m−1‖2

+
1

‖rOR
m ‖2

. (3.24)

Proof. From (3.19) and wMR
m −wMR

m−1 = (r0,wm)wm we obtain

wOR
m = wMR

m +
‖rMR

m ‖2

(wm, r0)

1

(r0,wm)
(wMR

m −wMR
m−1)

= wMR
m +

‖rMR
m ‖2

‖rMR
m−1‖2

‖rMR
m−1‖2

|(r0,wm)|2 (wMR
m −wMR

m−1)

= wMR
m +

s2
m

c2m
(wMR

m −wMR
m−1)

(cf. (3.14) and (3.7)), which implies the relationship (3.20) between the MR
and OR approximations and, by way of s2

m + c2m = 1, the corresponding
relationship (3.21) between their errors.

Repeated application of these two formulas leads to

wMR
m =

m∑

j=0

τ2
m,jw

OR
j and rMR

m =
m∑

j=0

τ2
m,jr

OR
j ,

where τm,0 := s1s2 . . . sm and τm,j := cjsj+1 . . . sm (1 ≤ j ≤ m). Using
(3.14) and (3.16) this can be simplified to

τm,j = cj
‖rMR

j+1‖
‖rMR

j ‖
‖rMR

j+2‖
‖rMR

j+1‖
· · · ‖r

MR
m ‖

‖rMR
m−1‖

= cj
‖rMR

m ‖
‖rMR

j ‖ =
‖rMR

m ‖
‖rOR

j ‖ ,

and we obtain (3.22) as well as (3.23). Finally, since the errors rOR
j are
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orthogonal, we have

1

‖rMR
m ‖2

=

m∑

j=0

1

‖rOR
j ‖2

=

m−1∑

j=0

1

‖rOR
j ‖2

+
1

‖rOR
m ‖2

=
1

‖rMR
m−1‖2

+
1

‖rOR
m ‖2

,

which proves (3.24). Strictly speaking, this proves

1

‖rMR
m ‖2

=
1

‖rMR
m−1‖2

+
1

‖rOR
m ‖2

only under the assumption that all OR approximations wOR
1 , . . . ,wOR

m exist.
But this last equation is merely a reformulation of the Pythagorean identity,

1 = s2
m + c2m =

‖rMR
m ‖2

‖rMR
m−1‖2

+
‖rMR

m ‖2

‖rOR
m ‖2

(cf. (3.14), (3.16)), requiring only the existence of wOR
m (besides r0 �∈ Wm).

�

Corollary 3.6. In view of

sm =
‖rMR

m ‖
‖rMR

m−1‖
, i.e., cm =

√
1 − ‖rMR

m ‖2

‖rMR
m−1‖2

,

an angle-free formulation of (3.16), (3.20) and (3.21) reads

‖rMR
m ‖ =

√
1 − ‖rMR

m ‖2

‖rMR
m−1‖2

‖rOR
m ‖,

wMR
m = wOR

m +
‖rMR

m ‖2

‖rMR
m−1‖2

(wMR
m−1 −wOR

m ),

rMR
m = rOR

m +
‖rMR

m ‖2

‖rMR
m−1‖2

(rMR
m−1 − rOR

m ).

Of course, the first of these identities, or its reformulation

‖rOR
m ‖ =

(
1 − ‖rMR

m ‖2

‖rMR
m−1‖2

)−1/2

‖rMR
m ‖,

only makes sense if wOR
m is defined, which is equivalent to ‖rMR

m ‖ < ‖rMR
m−1‖.

If ‖rMR
m ‖ ≈ ‖rMR

m−1‖ then the factor (1−‖rMR
m ‖2/‖rMR

m−1‖2)−1/2 will be large

and, consequently, ‖rOR
m ‖ ≫ ‖rMR

m ‖. Conversely, if the MR approximation
makes considerable progress in step m, then (1−‖rMR

m ‖2/‖rMR
m−1‖2)−1/2 ≈ 1

and ‖rOR
m ‖ ≈ ‖rMR

m ‖. In the context of Krylov subspace methods, this
observation is sometimes referred to as the peak/plateau phenomenon of
MR/OR approximations (see, e.g., Cullum and Greenbaum (1996)).
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Remark 3.7. We close this section by reconsidering the issue of the so-
called Galerkin breakdown mentioned in Remark 2.5. Using the biorthonor-
mal bases introduced in (3.12), we obtain the singular value expansion of
PVPW as

PVPW =

m−1∑

j=1

(·,wj)wj + cm(·,wm)w̃m.

If, in view of (2.7), one defines the OR approximation in the degenerate
case cm = 0 by wOR

m := (PVPW)+r0, then this leads to wOR
m = wMR

m−1 =

wMR
m . We thereby arrive at a natural extension of the definition of the OR

approximation in the case of a Galerkin breakdown.

3.4. Smoothing algorithms

A smoothing algorithm transforms a given sequence {um} ⊂ Wm of approx-
imations to r0 into a new sequence {ûm} ⊂ Wm according to

ûm := (1 − αm)ûm−1 + αmum (3.25)

(m = 1, 2, . . ., û0 := u0 = 0). The associated approximation errors rm =
r0 − um and r̂m = r0 − ûm then satisfy

r̂m = (1 − αm)r̂m−1 + αmrm.

The intention is that the errors of the transformed sequence should decrease
‘more smoothly’ than those of the original sequence. Ideally, we would like
to have ûm = wMR

m and we shall discuss two smoothing procedures which
achieve this goal when applied to um = wOR

m , that is, to the sequence of OR
approximations.

In minimal residual smoothing (cf. Weiss (1994), Zhou and Walker (1994)
or Gutknecht (1997, Section 17)), the parameter αm in (3.25) is chosen to
minimize the norm of the error r̂m = r̂m−1 − αm(r̂m−1 − rm) as a function
of αm. In other words, we seek the best approximation αm(r̂m−1−rm) from
span{r̂m−1 − rm} to r̂m−1, which is obtained for

αMR
m :=

(r̂m−1, r̂m−1 − rm)

‖r̂m−1 − rm‖2
.

In an alternative smoothing procedure known as quasi-minimal residual
smoothing (cf. Zhou and Walker (1994) or Gutknecht (1997, Section 17)),
the parameter αm is chosen as

αQMR
m :=

τ2
m

‖rm‖2
with τm such that

1

τ2
m

=
1

τ2
m−1

+
1

‖rm‖2
, τ0 = ‖r0‖.
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It is easy to see by induction that

τ2
m =

1∑m
j=0 1/‖rj‖2

, i.e., αQMR
m =

1/‖rm‖2

∑m
j=0 1/‖rj‖2

,

and therefore

ûm =

∑m
j=0 uj/‖rj‖2

∑m
j=0 1/‖rj‖2

as well as r̂m =

∑m
j=0 rj/‖rj‖2

∑m
j=0 1/‖rj‖2

.

The last formula for ûm reveals the strategy behind quasi-minimal residual
smoothing: ûm is a weighted sum of all previous iterates u0,u1, . . . ,um

with weights (1/‖rk‖2)/(
∑m

j=0(1/‖rj‖2)) which are (relatively) large if uk

approximates r0 well and (relatively) small if uk is a poor approximation
to r0.

In general, that is, for an arbitrary sequence {um} ∈ Wm, minimal and
quasi-minimal residual smoothing will generate different ‘smoothed’ iterates
ûm. In the case of um = wOR

m , however, these two methods are equivalent.

Proposition 3.8. If either the minimal residual or the quasi-minimal re-
sidual smoothing algorithm is applied to the sequence of OR approximations
{wOR

m } for an element r0 ∈ H, then the resulting smoothed sequence con-
sists of the MR approximations wMR

m for r0 and the associated smoothing

parameters are given by αMR
m = αQMR

m = c2m.

Proof. An induction shows that minimal residual smoothing applied to
um = wOR

m yields ûm = wMR
m and that, in this case, αMR

m = c2m: the
assertion is trivial for m = 1. Assuming ûm−1 = hMR

m−1 for some m ≥ 2, we
see from (3.19) that

r̂m−1 − rm = rMR
m−1 − rOR

m =
‖rMR

m−1‖2

(wm, r0)
wm

and consequently, noting that rMR
m−1 = rMR

m + (r0,wm)wm and rMR
m ⊥ wm,

(r̂m−1, r̂m−1 − rm) =

(
(r0,wm)wm,

‖rMR
m−1‖2

(wm, r0)
wm

)
= ‖rMR

m−1‖2.

From (3.7) and (3.20), there finally follows

αMR
m = ‖rMR

m−1‖2 |(wm, r0)|2
‖rMR

m−1‖4
=

|(wm, r0)|2
‖rMR

m−1‖2
= c2m and ûm = wMR

m .

The analogous assertion for quasi-minimal residual smoothing follows, with
(3.22) and (3.23), immediately from the orthogonality of the error vec-
tors rOR

m . �
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It should not come as a surprise that, in our setting, a one-dimensional
minimization procedure such as minimal residual smoothing yields the best
approximation wMR

m , which is the global optimum on Wm. Recall that wOR
m

is already ‘nearly optimal’ and needs to be corrected only in the direction
of wm.

4. Working with coordinates

The results of the previous sections more closely resemble the matrix for-
mulation of familiar Krylov subspace methods once they are formulated in
coordinates with respect to suitable bases of the spaces Wm and Vm. Spe-
cifically, the relevant quantities may be represented in terms of bases of either
space, and the situation is simplified if either of these bases is orthogonal.
The distinction between which bases are used and whether these are ortho-
gonal also results in three fundamental algorithmic approaches on which all
Krylov subspace solvers and their generalizations are based. As we show
in this section, these three approaches may all be expressed at the abstract
level of the preceding two sections, and this serves to isolate the algorithmic
features of these approximation methods from issues associated with their
use for solving equations, for instance, by Krylov subspace methods.

We shall begin with the simplest formulation in terms of an ascending
orthonormal basis of the sequence {Wm} followed by an approach which first
generates an ascending orthonormal basis of {Vm} from a not necessarily
orthogonal ascending basis of {Wm}. It is seen that the familiar relation of
these two bases via an unreduced upper Hessenberg matrix in the Krylov
subspace context also holds in the abstract setting as a direct consequence
of the definition of the sequence of residual spaces (3.10). The third basic
approach allows for neither of the two ascending bases to be orthogonal, and
it is shown how this case can be made to fit into the MR/OR framework by
introducing a new, basis-dependent inner product.

Motivated by this last approach, we show that, when allowing for such a
change of inner product, any sequence of approximations in a Hilbert space
becomes a sequence of either MR or OR approximations.

4.1. Using an orthonormal basis of Wm

If, for each m ≥ 1, the vectors {w1, . . . ,wm} form an orthonormal basis of
Wm, then each w ∈ Wm possesses the unique representation w = Wmy ,
in which Wm denotes the row vector Wm := [w1, . . . ,wm] and y ∈ C

m is
the coordinate vector of w with respect to this basis. The characterization
rMR
m = r0 − WmyMR

m ⊥ Wm then immediately determines the coordinate
vector yMR

m of wMR
m to be

yMR
m = [(r0,w1), . . . , (r0,wm)]⊤. (4.1)
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The coordinate vector yOR
m of the corresponding OR approximation wOR

m is
given by

yOR
m = [(r0,w1), . . . , (r0,wm−1), ‖wMR

m−1‖2/(wm, r0)]
⊤ (4.2)

since wOR
m = wMR

m−1 + ‖rMR
m−1‖2/(wm, r0)wm (cf. (3.19)).

4.2. Using an orthonormal basis of Vm

We now drop the orthogonality requirement on the vectors wj , assuming
only that the sequence of vectors {wm} forms an ascending basis of the
sequence of approximation spaces {Wm}. In the same manner, let {vm}
form an ascending basis of the corresponding residual spaces space Vm. Since
Wm ⊆ span{r0} + Wm = Vm+1, we may represent each basis vector wk as
a linear combination of v1, . . . , vk+1,

wk =
k+1∑

j=1

ηj,kvj , k = 1, . . . ,m,

or, more compactly, employing the row vector notation Wm = [w1, . . . ,wm]
and Vm := [v1, . . . , vm], m = 1, 2, . . . ,

Wm = Vm+1H̃m = VmHm + [0, . . . ,0, ηm+1,mvm+1], (4.3)

where H̃m =: [ηj,k] ∈ C
(m+1)×m is an upper Hessenberg matrix and Hm :=

[Im 0]H̃m is the square matrix obtained by deleting the last row of H̃m.
Note that as long as r0 �∈ Wm, that is, wm �∈ Vm, we have ηm+1,m �= 0 and

therefore rank(H̃m) = m. If r0 ∈ Wm for some index m, we let

L := min{m : r0 ∈ Wm} (4.4)

be the smallest such index and note that VL+1 = VL = span{v1, . . . , vL},
that is, WL = VLHL, implying rank(HL) = rank(H̃L) = L. If such an index
does not exist, we set L = ∞. To avoid cumbersome notation we shall
concentrate on the case of L < ∞, which is the most relevant for practical
applications. We note, however, that all our conclusions can be proved in
the general case.

For a given sequence {wj}j≥1, an orthonormal sequence of vectors {vj}j≥1

may be constructed recursively, starting with v1 := r0/‖r0‖ and, in view of
Vm+1 = Vm + span{wm}, successively orthogonalizing each wm against the
previously generated v1, . . . , vm:

v1 := r0/β, β := ‖r0‖,

vm+1 :=
(I − PVm

)wm

‖(I − PVm
)wm‖ , m = 1, 2, . . . , L− 1.

(4.5)

Of course, this is simply the Gram–Schmidt orthogonalization procedure
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applied to the basis {r ,w1, . . . ,wm−1} of Vm, and hence in this case the
entries in the Hessenberg matrix introduced in (4.3) are given by

ηj,m = (wm, vj), j = 1, . . . ,m + 1, m ≥ 1.

We also note that

ηm+1,m = (wm, vm+1) = ‖(I − PVm
)wm‖ ≥ 0 (4.6)

with equality holding if and only if wm ∈ Vm or, equivalently, r0 ∈ Wm,
that is, m = L.

We now turn to the determination of the coordinate vectors of the MR and
OR approximations with respect to the basis {w1, . . . ,wm}. In the following

lemma and in the remainder of the paper, we will employ the notation u
(m)
1

to denote the first unit coordinate vector of C
m and omit the superscript

when the dimension is clear from the context.

Lemma 4.1. The coordinate vector yMR
m ∈ C

m of the MR approximation
wMR

m with respect to the basis {w1, . . . ,wm} is the solution of the least-
squares problem

‖βu (m+1)
1 − H̃my‖2 → min

y∈Cm
, (4.7)

whereas the coordinate vector yOR
m of the OR approximation solves the linear

system of equations

Hmy = βu
(m)
1 . (4.8)

In short,

yMR
m = βH̃+

mu
(m+1)
1 and yOR

m = βH−1
m u

(m)
1 ,

where H̃+
m = (H̃H

m H̃m)−1H̃H
m is the Moore–Penrose pseudo-inverse of H̃m.

Proof. The assertions of the lemma become obvious when the relevant
quantities are represented in terms of the orthonormal basis {v1, . . . , vm+1}
of Vm+1. The vector r0 to be approximated possesses the coordinate vector
βu1 ∈ R

m+1 and the approximation space Wm = span{w1, . . . ,wm} is rep-
resented by the span of the columns of H̃m. In other words, if w ∈ Wm has
the coordinate vector y with respect to {w1, . . . ,wm}, then r = r0 − w ∈
Vm+1 has the coordinate vector βu1 − H̃my with respect to {v1, . . . , vm+1}.
More formally, for any w = Wmy ∈ Wm (y ∈ C

m),

r0 −w = r0 −Wmy = βv1 − Vm+1H̃my = Vm+1(βu1 − H̃my).

As the vectors {v1, . . . , vm+1} are orthonormal, it follows that

‖r0 −w‖ = ‖βu1 − H̃my‖2

(‖ · ‖2 denoting the Euclidean norm in C
m+1). Similarly, r0 − w ⊥ Vm
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if and only if the first m components of βu1 − H̃my vanish, that is, if

βu
(m)
1 −Hmy = 0. �

Remark 4.2. To determine yOR
m using Lemma 4.1 we must of course as-

sume that the linear system Hmy = βu1 is solvable. But this is equival-
ent to our previous characterization of the existence of wOR

m , namely that
cm = cos ∡(rMR

m−1,Wm) �= 0 (cf. (3.8) and Corollary 3.2), which can be seen

as follows. First, note that u
(m)
1 and the first m− 1 column vectors of Hm

form a basis of C
m as long as m ≤ L (since ηj+1,j �= 0 for j = 1, 2, . . . , L−1).

This implies that Hmy = βu1 is consistent, that is, u1 ∈ range(Hm), if and
only if Hm is nonsingular.

Next, recall from Remark 2.6 that cm equals the smallest singular value of
the matrix [(vj , ŵk)]j,k=1,2,...,m, where {ŵ1, ŵ2, . . . , ŵm} is any orthonormal
basis of Wm. We select such an orthonormal basis and represent its ele-
ments as linear combinations in the original basis {w1,w2, . . . ,wm}. In our
row vector notation, this leads to a nonsingular matrix T ∈ C

m×m with
[ŵ1, ŵ2, . . . , ŵm] = [w1,w2, . . . ,wm]T . Now,

[(vj , ŵk)] = TH [(vj ,wk)] = (HmT )H

and, consequently, the smallest singular value of [(vj , ŵk)] is positive if and
only if Hm is nonsingular.

Remark 4.3. In view of (4.3) and the result of Lemma 4.1, the approx-
imations wMR

m and wOR
m and their associated errors have the following rep-

resentations in terms of the basis {v1, . . . , vm+1}:

wMR
m = Vm+1H̃mH̃+

mβu
(m+1)
1 , rMR

m = Vm+1

(
Im+1 − H̃mH̃+

m

)
βu

(m+1)
1 ,

wOR
m = Vm+1H̃mH−1

m βu
(m)
1 , rOR

m = Vm+1

([
Im
0

]
− H̃mH−1

m

)
βu

(m)
1 .

(4.9)

The last identity shows that the coordinate vector of rOR
m has a particularly

simple form. Introducing the notation H−1
m =

[
η

[−1]
j,k

]
, we obtain, for m < L,

rOR
m = βVm+1

(
u

(m+1)
1 − H̃mH−1

m u
(m)
1

)

= βVm+1

(
Im+1 − H̃m[H−1

m 0 ]
)
u

(m+1)
1

= βVm+1

[
0

−ηm+1,m η
[−1]
m,1

]
= −βηm+1,m η

[−1]
m,1 vm+1.

The matrix Im+1 − H̃m[H−1
m 0 ] represents I − PVm

Wm
restricted to Vm+1

with respect to the orthonormal basis {v1, . . . , vm+1}. The following lemma,
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which was recently obtained by Hochbruck and Lubich (1998), provides a
simpler expression for this projection.

Lemma 4.4. Let the vector ŵm+1 ∈ Vm+1 ∩ W⊥
m be defined by the con-

dition (vm+1, ŵm+1) = 1. Then, for all v ∈ Vm+1, we have

(I − PVm

Wm
)v = (v , ŵm+1)vm+1. (4.10)

Further, the coordinate vector ŷm+1 of ŵm+1 with respect to {v1, . . . , vm+1}
has the form

ŷm+1 =

[
gm
1

]
, where gm solves HH

mgm = −ηm+1,mum

and um denotes the last unit coordinate vector in R
m.

Proof. On Vm+1, the projection I−PVm

Wm
is characterized by the two prop-

erties

(I − PVm

Wm
)v = v ∀v ∈ Vm+1 ∩ V

⊥
m = span{vm+1},

(I − PVm

Wm
)v = 0 ∀v ∈ Vm+1 ∩ Wm,

that is, it is the oblique projection onto Vm+1∩V⊥
m orthogonal to Vm+1∩W⊥

m,
both of which are one-dimensional spaces of which {vm+1} and {ŵm+1} are

biorthonormal bases. Thus, (4.10) is the singular value expansion of I−PVm

Wm

restricted to Vm+1.
To determine the coordinate vector ŷm+1, we first note that the require-

ment (vm+1, ŵm+1) = 1 implies that its last component is equal to one. Fur-
thermore, ŵm+1 ⊥ Wm translates to ŷm+1 ∈ null(H̃H

m ), since the columns
of H̃m span the coordinate space of Wm. Letting gm ∈ C

m denote the first
m components of ŷm+1 and recalling that ηm+1,m > 0, we obtain

0 = H̃H
m ŷm+1 =

[
HH

m ηm+1,mum

] [gm
1

]
= HH

mgm + ηm+1,mum. �

The representation (4.10) can be used to obtain another expression for the
OR approximation error as follows: by virtue of the inclusion Wm−1 ⊂ Wm,
an arbitrary vector w ∈ Wm−1 must lie in the nullspace of I−PVm

Wm
. Further-

more, the difference r0 −w ∈ span{r0}+ Wm−1 = Vm has a representation
r0 −w = Vmz with z ∈ C

m. It follows that

rOR
m = (I − PVm

Wm
)r0 = (I − PVm

Wm
)(r0 −w) = (r0 −w , ŵm+1)vm+1

=

(
Vm+1

[
z

0

]
, Vm+1

[
gm
1

])
vm+1 = (gH

m z ) vm+1,
(4.11)

and therefore ‖rOR
m ‖ = |gH

m z | ≤ ‖gm‖2 ‖z‖2 with equality holding if and
only if g and z are collinear. At the same time, as gm is fixed, equality
must occur when ‖z‖2 = ‖r0 − w‖ is minimized among all w ∈ Wm−1,
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which is the case for w = wMR
m−1. As a result, ‖rOR

m ‖ = ‖gm‖2‖rMR
m−1‖ which,

in view of (3.14) and (3.16), implies ‖gm‖2 = sm/cm, an identity which
could also have been derived directly from the definition of gm.

The least-squares problem (4.7) can be solved with the help of a QR
decomposition of the Hessenberg matrix H̃m, which we write as

QmH̃m =

[
Rm

0

]
, (4.12)

with Qm ∈ C
(m+1)×(m+1) unitary (QH

mQm = Im+1) and Rm ∈ C
m×m upper

triangular. Substituting (4.12) in (4.7) yields

min
y∈Cm

‖βu1 − H̃my‖2 = min
y∈Cm

∥∥∥∥Q
H
m

(
βQmu1 −

[
Rm

0

]
y

)∥∥∥∥
2

= min
y∈Cm

∥∥∥∥βQmu1 −
[
Rm

0

]
y

∥∥∥∥
2

= min
y∈Cm

∥∥∥∥∥

[
βqm −Rmy

βq
(m)
m+1,1

]∥∥∥∥∥
2

,

where [q⊤
m, q

(m)
m+1,1]

⊤ (qm ∈ C
m) denotes the first column of Qm. Since H̃m

has full rank, Rm is nonsingular and the solution of the above least-squares
problem is yMR

m = βR−1
m qm. The associated least-squares error is given by

‖rMR
m ‖ = β|q(m)

m+1,1|.
The following theorem identifies the angles between r0 and Wm as well

as those between the spaces Vm and Wm with quantities which occur in the
first column of the matrix Qm.

Theorem 4.5. If, for m = 1, . . . , L, Qm = [q
(m)
j,k ]m+1

j,k=1 ∈ C
(m+1)×(m+1) is

the unitary matrix in the QR decomposition (4.12) of the Hessenberg matrix
H̃m in (4.3), then

sin ∡(r0,Wm) =
∣∣∣q(m)

m+1,1

∣∣∣ , (4.13)

sin ∡(rMR
m−1,Wm) = sin∡(Vm,Wm) =

∣∣∣q(m)
m+1,1/q

(m−1)
m,1

∣∣∣ . (4.14)

Proof. As mentioned earlier (cf. the proof of Lemma 4.1) the vector r0

possesses the coordinates βu
(m+1)
1 with respect to the orthonormal basis

{v1, . . . , vm+1} of Vm+1, whereas Wm is represented by range(H̃m) ⊂ C
m+1.

This implies

∡(r0,Wm) = ∡2(βu1, range(H̃m)) = ∡2(u1, range(H̃m)),

where the subscript 2 indicates that the last two angles are defined with
respect to the Euclidean inner product on C

m+1.
The vectors [v1, . . . , vm+1]Q

H
m form another orthonormal basis of Vm+1
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with respect to which r0 possesses the coordinate vector βQmu
(m+1)
1 =:

β[q⊤
m, q

(m)
m+1,1]

⊤, that is, a multiple of the first column of Qm, and Wm is

represented by QmH̃my =
[
Rmy

0

]
(y ∈ C

m), a subspace of C
m+1 which we

identify with C
m because it consists of those vectors from C

m+1 whose last
component equals zero. Consequently,

∡(r0,Wm) = ∡2(β[q⊤
m, q

(m)
m+1,1]

⊤,Cm) = ∡2([q
⊤
m, q

(m)
m+1,1]

⊤,Cm)

which, in view of (2.3), proves assertion (4.13). Formula (4.14) follows
directly from (3.6) and (3.11). �

The matrix Qm is usually constructed as a product of Givens rotations

Qm = Gm

[
Gm−1 0

0 1

] [
Gm−2 0

0 I2

]
· · ·

[
G1 0

0 Im−1

]

where, for k = 1, 2, . . . ,m,

Gk :=



Ik−1 0 0

0 c̃k s̃ke
−iφk

0 −s̃ke
iφk c̃k


 (c̃k, s̃k ≥ 0, c̃2k + s̃2

k = 1, φk ∈ R).

We briefly explain how these rotations have to be chosen inductively. As-
sume that we have constructed G1, . . . , Gm−2, Gm−1 such that

[
Gm−1 0

0 1

] [
Gm−2 0

0 I2

]
· · ·

[
G1 0

0 Im−1

]
H̃m =



Rm−1 r

0 τ
0 ηm+1,m


 .

For later use, we rewrite this identity in the form

[
Qm−1 0

0 1

] [
Hm

0 · · · 0 ηm+1,m

]
=



Rm−1 r

0 τ
0 ηm+1,m


 . (4.15)

Now we set

c̃m :=
|τ |√

|τ |2 + η2
m+1,m

, s̃m :=
ηm+1,m√

|τ |2 + η2
m+1,m

,

φm := arg(ηm+1,m) − arg(τ) = − arg(τ)

(4.16)

(recall ηm+1,m ≥ 0) and verify by a simple calculation that


Im−1 0 0

0 c̃m s̃me−iφm

0 −s̃meiφm c̃m





Rm−1 r

0 τ
0 ηm+1,m


 =



Rm−1 r

0 ρ
0 0




with ρ =
√

|τ |2 + η2
m+1,m e−iφm .
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That the quantities s̃m and c̃m are indeed the sines and cosines of the
angles ∡(rMR

m−1,Wm) = ∡(Vm,Wm) can be easily seen as follows. Since

q
(m)
m+1,1 = −s̃meiφmq

(m−1)
m,1 , by Theorem 4.5 we have

sm = ∡(rMR
m−1,Wm) = |q(m)

m+1,1/q
(m−1)
m,1 | = s̃m.

When describing MR and OR approximations the alternate orthonormal
basis of Vm+1 which occurred in the proof of Theorem 4.5, and which was
already employed by Paige and Saunders (1975), often proves useful: we
thus define

V̂m+1 := [v̂
(m+1)
1 , . . . , v̂

(m+1)
m+1 ] := Vm+1Q

H
m. (4.17)

The notation v̂
(m+1)
1 , . . . , v̂

(m+1)
m+1 for these new basis vectors is not entirely

appropriate, since, as the following proposition shows, all but the last do
not change with the index m.

Proposition 4.6. We have

[v̂
(m+1)
1 , . . . , v̂ (m+1)

m , v̂
(m+1)
m+1 ] = [v̂1, . . . , v̂m, ṽm+1],

where ṽ1 = v1, and, for m = 1, . . . , L− 1,

v̂m = cmṽm + smeiφmvm+1,

ṽm+1 = −sme−iφm ṽm + cmvm+1.

The vectors {v̂1, . . . , v̂m, ṽm+1} form an orthonormal basis of Vm+1 such
that {v̂1, . . . , v̂m} is a basis of Wm. In addition,

wMR
m = V̂m+1β

[
qm
0

]
and rMR

m = V̂m+1β

[
0

q
(m)
m+1,1

]
. (4.18)

Proof. To prove the first two assertions, we observe

V̂m+1 = Vm+1Q
H
m = [Vm, vm+1]

[
QH

m−1 0

0 1

]
GH

m

=
[
V̂m, vm+1

]


Im−1 0 0

0 cm −sme−iφm

0 smeiφm cm


 .

That the first m columns of V̂m+1 form a basis of the approximation space
Wm follows from

Wm = Vm+1H̃m = Vm+1Q
H
m

[
Rm

0

]
= [v̂1, . . . , v̂m]Rm,

which also implies (4.18). �

We summarize the coordinate representations of the MR and OR errors
in the following result.
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Proposition 4.7. For the MR and OR errors we have

rMR
m = β q

(m)
m+1,1ṽm+1 = β

m∏

j=1

[
−sje

iφj

]
ṽm+1,

rOR
m = −β

sm
cm

eiφmq
(m−1)
m,1 vm+1 =

β

cm

m∏

j=1

[
−sje

iφj

]
vm+1,

rMR
m−1 − rOR

m =
β

cm
q
(m−1)
m,1 v̂m =

β

cm

m−1∏

j=1

[
−sje

iφj

]
v̂m.

Proof. The recursive definition of Qm allows us to express its entries q
(m)
k,1

explicitly in terms of the quantities sj and cj :

q
(m)
k,1 = ck

k−1∏

j=1

[
−sje

iφj

]
(1 ≤ k ≤ m), q

(m)
m+1,1 =

m∏

j=1

[
−sje

iφj

]
.

This, together with (4.18), proves the first identity.

Next, we recall from Remark 4.3 that rOR
m = −βηm+1,m η

[−1]
m,1 vm+1. To

eliminate η
[−1]
m,1 from this relation, we note that the matrix Hm possesses the

QR decomposition (cf. (4.15))

Qm−1Hm =

[
Rm−1 r

0 τ

]
, i.e., H−1

m =

[
R−1

m−1 r̃

0 1/τ

]
Qm−1, (4.19)

which implies η
[−1]
m,1 = q

(m−1)
m,1 /τ . Since ηm+1,m/τ = eiφmsm/cm (cf. (4.16))

we conclude η
[−1]
m,1 ηm+1,m = q

(m−1)
m,1 eiφmsm/cm. This proves the second iden-

tity.
The desired representation of rMR

m−1−rOR
m now follows from v̂m = cmṽm +

smeiφmvm+1 (cf. Proposition 4.6). �

We note that all relations of Theorem 3.4 connecting the MR and OR
approaches can be easily obtained by manipulating the error representations
of Proposition 4.7. Indeed, this is essentially how these relations are proven
in the literature on Krylov subspace methods. The main difference there is
that the occurring sines and cosines result from the Givens rotations needed
to construct the QR decomposition of H̃m, and they have not been identified
as the sines and cosines of ∡(r0,Wm).

Finally, we observe that the vector ŵm+1 introduced in Lemma 4.4 is
given by ṽm+1/cm in terms of the last vector in the Paige–Saunders basis,
so that an equivalent formulation of (4.10) reads

(
I − PVm

Wm

)
v =

(v , ṽm+1)

cm
vm+1 (v ∈ Vm+1).
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4.3. Using arbitrary bases of Wm and Vm

For practical computations it is desirable that the Hessenberg matrices H̃m

introduced in (4.3) have small bandwidth. Indeed, if H̃m has only k non-
vanishing diagonals, namely the ones with indices −1, 0, 1, . . . , k − 2 (we
follow the standard notation according to which a diagonal has index k if
its entries ηj,ℓ are characterized by ℓ − j = k), then only k diagonals of
the upper triangular matrices Rm are nonzero, namely those with indices
k = 0, 1, . . . , k − 1. This follows easily from the fact that Qm has lower
Hessenberg form. This banded structure of the matrices Rm can then be
used to derive k-term recurrence formulas for the coordinate vectors ym in
terms of ym−1,ym−2, . . . ,ym−k+1 and for the approximations wm in terms of
wm−1,wm−2, . . . ,wm−k+1. (This statement applies to both the MR and the
OR approach.) The most important consequence of this observation is that,
at each step, only the k previous approximations (or, in other implementa-
tions, the last k basis vectors) need to be stored, which means that in this
case storage requirements do not increase with m. If we insist on choosing
v1, . . . , vL as orthogonal vectors then the Hessenberg matrices will generally
not have banded form. The main motivation for giving up orthogonality of
the basis of Vm is therefore to constrain the bandwidth of Hm in order to
keep storage requirements low.

As explained at the beginning of Section 4.2, no orthogonality conditions
are required to derive the fundamental relationship (4.3)

Wm = Vm+1H̃m = VmHm + [0, . . . ,0, ηm+1,mvm+1].

In this section, we assume only that v1, v2, . . . are linearly independent
such that {v1, . . . , vm} constitutes a basis of Vm (m = 1, 2, . . . , L). Just as
before, the jth column of the upper Hessenberg matrix H̃m ∈ C

(m+1)×m

contains the coefficients of wj ∈ Wj ⊂ Vm+1 with respect to the basis
vectors v1, . . . , vm+1. The difference is that, since now the vectors vj need
not be orthogonal, these coefficients can no longer be expressed in terms of
the inner product with which H was originally endowed. We shall see below
that we can recover the usual inner product representation by switching to
another suitable inner product. Recall from the proof of Lemma 4.1 that,
for each w = Wmy ∈ Wm (y ∈ C

m), the associated error in approximating
r0 is represented by

r = r0 −w = r −Wmy = βv1 − Vm+1H̃my = Vm+1(βu1 − H̃my).

Minimizing the norm of r among all w ∈ Wm leads as above to the least
squares problem

min
y∈Cm

∥∥∥Vm+1

(
βu1 − H̃my

)∥∥∥ = min
y∈Cm

‖βu1 − H̃my‖v , (4.20)

in which now ‖ · ‖v denotes the norm induced on the coordinate space with
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respect to VL by the inner product (·, ·) given on H. More precisely, if we
set for x ,y ∈ C

L

(x ,y)v := (VLx , VLy) = yHMx , where M := [(vj , vk)] ∈ C
L×L, (4.21)

then (·, ·)v is an inner product on C
L with associated norm

‖ · ‖v =
√

(·, ·)v .
At this point one could proceed as in the algorithms which use an ortho-

gonal basis, the only difference being that all inner products in the coordin-
ate space now require knowledge of the Gram matrix M . In particular,
the Givens rotations and the matrices Qm in the QR factorization (4.12)
must now be unitary with respect to the inner product (·, ·)v , that is, they
must satisfy QH

mMmQm = Im, where Mm ∈ C
(m+1)×(m+1) is the (m + 1)st

leading principal submatrix of M . The submatrices Mm, however, cannot
be computed unless all basis vectors v1, v2, . . . , vm+1 are available, and thus
any short recurrence for generating these would not result in any storage
savings: this is precisely what we wish to avoid.

An alternative was originally proposed by Freund (1992): rather than
solving the minimization problem (4.20), we instead solve

min
y∈Cm

‖βu1 − H̃my‖2,

and, if y
QMR
m ∈ C

m denotes the unique solution to this least-squares prob-
lem, regard

wQMR
m := WmyQMR

m

as an approximation of r0. Adhering to the terminology introduced by
Freund, we refer to this approach as the quasi-minimal residual (QMR)
approach. Following the convention in the literature on Krylov subspace
methods, we refer to the (coordinate) vector

sQMR
m := βu1 − H̃myQMR

m ∈ C
m+1

as the quasi-error of w
QMR
m .

We note that, instead of changing the inner product in the coordinate
space from (·, ·)v to the Euclidean inner product, one could equivalently
have replaced the given inner product (·, ·) on VL ⊆ H by

(v ,w)V = (VLx , VLy)V =: yHx ∀v = VLx ,w = VLy ∈ VL, (4.22)

and proceeded as in the MR algorithm of Section 4.2. The new inner product
(·, ·)V thus defined has the property that the basis vectors {v1, . . . , vL} are
orthonormal. For related work on interpreting QMR approximations as MR
approximations in a modified norm see Barth and Manteuffel (1994).

The following assertions are obvious if we keep in mind that, for x ,y ∈ C
L,
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we have the relations

(VLx , VLy)V = (VLx , VLM
−1y) = (VLM

−1x , VLz )

= (VLM
−1/2x , VLM

−1/2y),

(VLx , VLy) = (VLx , VLMy)V = (VLMx , VLy)V

= (VLM
1/2x , VLM

1/2y)V .

(4.23)

As a consequence, we obtain for instance the following result.

Theorem 4.8. The QMR iterates are the MR iterates with respect to the
inner product (·, ·)V :

‖rQMR
m ‖V = ‖r0 −wQMR

m ‖V = min
w∈Wm

‖r0 −w‖V .

In terms of the original norm on H, the MR and QMR errors may be
bounded by

‖rMR
m ‖ ≤ ‖rQMR

m ‖ ≤
√

κ2(Mm) ‖rMR
m ‖, (4.24)

in which κ2(Mm) denotes the (Euclidean) condition number of the (Her-
mitian positive definite) matrix Mm. Moreover, we have

‖rQMR
m ‖ ≤ λ1/2

max(Mm)‖sQMR
m ‖.

Proof. Only the second inequality in (4.24) remains to be proved. This
follows immediately from

λ
1/2
min(Mm) ‖y‖2 ≤ ‖y‖v ≤ λ1/2

max(Mm) ‖y‖2 ∀y ∈ C
m+1. �

In view of (4.24) the deviation of the QMR approach from the MR ap-
proach is bounded by the condition numbers κ2(Mm), that is, by the ratio of
the extremal eigenvalues of Mm. The largest eigenvalue λmax(Mm) is easily
controlled: it merely requires choosing the basis vectors vm to have unit
length, that is, ‖vm‖ = 1 for all m, to ensure λmax(Mm) ≤ m+ 1 (note that
λmax(Mm) ≤ ‖Mm‖F := [

∑m+1
j,k=1(vj , vk)

2]1/2 ≤ [
∑m+1

j,k=1 ‖vj‖ ‖vk‖]1/2). The

crucial point is to construct the basis Vm in such a way that λmin(Mm) does
not approach zero (or does so only slowly).

Another immediate consequence of (4.23) is as follows.

Proposition 4.9. The QMR error vectors satisfy

rQMR
m ⊥ Um,

where Um := {v = Vm+1y : y = M−1
m H̃mz for some z ∈ C

m} is an m-
dimensional subspace of Vm+1 (UL = VL for m = L) and orthogonality
is understood with respect to the original inner product (·, ·) on H. Con-
sequently,

rQMR
m =

(
I − PUm

Wm

)
r0,
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where PUm

Wm
denotes the oblique projection onto Wm orthogonal to Um.

Proof. Since the QMR approximations are merely the MR approximations
with respect to (·, ·)V , their errors r

QMR
m ∈ Vm+1 are characterized by

rQMR
m ⊥V Wm.

From this observation and (4.23) both assertions easily follow.
An equally simple proof results from the fact that

rQMR
m = Vm+1

(
βu1 − H̃myQMR

m

)
,

where y
QMR
m solves the least-squares problem ‖βu1 − H̃my‖2 → min. In

other words,

βu1 − H̃myQMR ⊥ range(H̃m) or βu1 − H̃myQMR ⊥v M−1 range(H̃m).

�

Note that the orthogonal complement of Um is given by U⊥
m = span{rQMR

m }
+V⊥

m+1, that is, U⊥
m ⊕ Vm = H and the oblique projection PUm

Wm
exists.

We now briefly describe the analogue of the OR approach when using a
non-orthogonal basis. In place of seeking y ∈ C

m such that

0 =
(
Vm+1[βu1 − H̃my ], vj

)
= (βu1 − H̃my ,uj)v (j = 1, 2, . . . ,m),

which would lead to r −Wmy ⊥ Vm and thereby to a proper OR approx-
imation, we instead determine a coordinate vector y

QOR
m ∈ C

m to satisfy

0 = (βu1 − H̃myQOR
m ,uj)2 (j = 1, 2, . . . ,m), i.e., HmyQOR

m = βu1 (4.25)

(provided Hm is nonsingular) and thus obtain the corresponding approxim-

ants w
QOR
m := Wmy

QOR
m . In terms of the inner product (·, ·)V on VL these

are characterized by

rQOR
m = r0 −wQOR

m ⊥V Vm

that is, the QOR iterates are the OR iterates with respect to the inner
product (·, ·)V . By analogy with Proposition 4.9 we obtain the following
result.

Proposition 4.10. The QOR errors satisfy

rQOR
m ⊥ Tm,

where Tm := {v = Vm+1y ∈ Vm+1 : y = M−1
m [z⊤ 0]⊤ with z ∈ C

m} is
an m-dimensional subspace of Vm+1 (TL = VL for m = L) and orthogon-
ality is understood with respect to the original inner product (·, ·) on H.
Consequently,

rQOR
m =

(
I − PTm

Wm

)
r0,
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where PTm

Wm
denotes the oblique projection onto Wm orthogonal to Tm.

We know from Remark 4.2 that Hm being nonsingular is equivalent to
Wm ⊕ V⊥V

m = H. But since, for every h ∈ H, h ⊥V Vm if and only if

h ⊥ Tm, the oblique projection PTm

Wm
exists if Hm is nonsingular.

The simple observation that the QMR and QOR approximations are the
MR and OR approximations, respectively, obtained when replacing the
original inner product (·, ·) with the basis-dependent inner product (·, ·)V
implies that the assertions of the preceding sections, particularly those
of Theorem 3.4 and Propositions 3.8 and 4.7, are valid for any pair of
QMR/QOR methods. Note, however, that when formulating these results
for QMR/QOR methods each occurrence of the original norm must be re-
placed by the ‖ · ‖V -norm and that angles are understood to be defined with
respect to (·, ·)V .

As an example, we mention that

wQMR
m = ŝ2

mw
QMR
m−1 + ĉ2mwQMR

m ,

where

ŝm := sin∡V (rQMR
m−1 ,Wm), ĉm := cos ∡V (rQMR

m−1 ,Wm)

and ∡V (rQMR
m−1 ,Wm) denotes the angle between r

QMR
m−1 and Wm with respect

to the inner product (·, ·)V .
We conclude our discussion of abstract QMR and QOR approximations

with a comment on the effect of applying the smoothing procedures intro-
duced in Section 3, namely minimal and quasi-minimal residual smoothing,
to the QOR approximations. We first note that the two are no longer equi-
valent. Specifically, if we define

αMR
m :=

(dQMR
m−1 ,dQMR

m−1 − d
QOR
m )

‖dQMR
m−1 − d

QOR
m ‖2

(4.26)

then, in general, wQMR
m �= (1−αMR

m )wQMR
m−1 +αMR

m w
QOR
m because the formula

(4.26) for the smoothing parameter αMR
m was derived in order that the errors

of the smoothed approximations solve a local approximation problem with
respect to the inner product (·, ·), which is different from the inner product
(·, ·)V which characterizes the QMR and QOR approximations. Minimal
residual smoothing therefore does not lead from QOR to QMR.

It is an easy consequence of Remark 4.3 that the situation is different if
we apply QMR smoothing. If we set

αQMR
m =

1/‖rQOR
m ‖2

V∑m
j=0 1/‖rQOR

j ‖2
V

,

then w
QMR
m = (1 − αQMR

m )wQMR
m−1 + αQMR

m w
QOR
m does indeed hold (cf. Pro-
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position 3.8). But since r
QOR
m = γvm+1 for some γ ∈ C, we have

‖rQOR
m ‖V = |γ| = ‖rQOR

m ‖/‖vm+1‖
and consequently

αQMR
m =

‖vm+1‖2/‖rQOR
m ‖2

∑m
j=0 ‖vj+1‖2/‖rQOR

j ‖2
.

If we make the usual assumption that the basis vectors vj have unit length
(‖vj‖ = 1 for all j), then

αQMR
m =

1/‖rQOR
m ‖2

∑m
j=0 1/‖rQOR

j ‖2
,

and the QMR and QOR approximants are related by exactly the formulas
which hold for a proper MR/OR pair, namely,

wQMR
m =

∑m
j=0 w

QOR
j /‖rQOR

j ‖2

∑m
j=0 1/‖rQOR

j ‖2
and rQMR

m =

∑m
j=0 r

QOR
j /‖rQOR

j ‖2

∑m
j=0 1/‖rQOR

j ‖2
.

QMR smoothing applied to CGS and Bi-CGSTAB is discussed in Walker
(1995). For smoothing techniques applied to the general class of Lanczos-
type product methods, see Ressel and Gutknecht (1998).

The above analysis might lead one to believe that the QMR approxima-
tions will move steadily further away from the MR approximation at each
step. The following observation due to Stewart (1998) shows that this is
not necessarily the case, but that the QMR approximation may under cer-
tain conditions recover, regardless of how far it may have deviated from the
(optimal) MR approximation in earlier steps.

Proposition 4.11. We have w
QMR
m = wMR

m if and only if ṽm+1 ⊥ Wm,

and w
QOR
m = wOR

m if and only if vm+1 ⊥ Vm.

Proof. By Proposition 4.6, we have both Wm = span{v̂1, . . . , v̂m} and

r
QMR
m ∈ span{ṽm+1}. Since r

QMR
m = rMR

m if and only if r
QMR
m ⊥ Wm,

the first assertion is proved. The analogous assertion for the QOR approx-
imation follows from r

QOR
m ∈ span{vm+1}; hence r

QOR
m ⊥ Vm if and only if

vm+1 ⊥ Vm. �

4.4. Every method is an MR and an OR method

In Section 4.3 we saw how the QMR and QOR approximations can be
reinterpreted as MR and OR approximations with respect to the basis-
dependent inner product (·, ·)V . It turns out that an analogous interpret-
ation is possible for any reasonable sequence of approximations {wm} to
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a given r0 ∈ H, in fact, as we will show, both as an MR and as an OR
approximation.

In the remainder of this section {Wm}Lm=0 denotes any sequence of nested
spaces with dim Wm = m (in particular, W0 = {0}), and {Vm}Lm=1 denotes
the associated sequence of error spaces Vm = span{r0} + Wm−1 relative to
r0 ∈ H.

Theorem 4.12. Assume {hm}Lm=0 is a sequence of approximations to r0 ∈
H such that hm ∈ Wm and hL = r . Then an inner product (·, ·)V on
VL = WL such that

‖r0 − hm‖V = min
w∈Wm

‖r −w‖V , m = 1, 2, . . . , L− 1,

exists if and only if hm ∈ Wm−1 implies hm = hm−1 for m = 1, 2, . . . , L− 1
or, in other words, if and only if

either hm ∈ Wm\Wm−1 or hm = hm−1, m = 1, 2, . . . , L−1. (4.27)

Proof. If the vectors {hm}L−1
m=1 are the best approximations to r0 from Wm

with respect to some inner product (·, ·)V , then, whenever hm happens to lie
also in Wm−1, hm must also be the best approximation to r0 from Wm−1,
whereby hm = hm−1, which proves the necessity of (4.27).

Conversely, assuming that (4.27) is satisfied, we write

r0 = (h1 − h0) + (h2 − h1) + · · · + (hL − hL−1)

and construct a basis {w1, . . . ,wL} of WL by setting

wm :=

{
hm − hm−1, if hm ∈ Wm \ Wm−1,

an arbitrary vector from Wm \ Wm−1, if hm = hm−1.

Note that, for each m, {w1, . . . ,wm} is a basis of Wm. We further define
the ‘Fourier coefficients’ αm by

αm :=

{
1, if hm ∈ Wm \ Wm−1,

0, if hm = hm−1,
m = 1, . . . , L,

so that r0 = α1w1 + α2w2 + · · · + αLwL and

hm = α1w1 + α2w2 + · · ·αmwm, m = 1, . . . , L,

that is, hm is simply the truncated ‘Fourier expansion’ of r0. Defining the
inner product (·, ·)V such that {w1, . . . ,wL} are orthonormal then leads to
the desired conclusion. �

The next theorem establishes the analogous result for the OR (or, more
precisely, the QOR) approximation.
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Theorem 4.13. If {hm}Lm=1 is a sequence of approximations to r0 ∈ H

such that hm ∈ Wm and hL = r0, then an inner product (·, ·)Ṽ on VL = WL

such that

r0 − hm ⊥Ṽ Vm, m = 1, 2, . . . , L− 1,

exists if and only if hm ∈ Wm \ Wm−1 for m = 1, 2, . . . , L− 1.

Proof. Assume that, for all m = 1, 2, . . . , L− 1, the vectors hm are the OR
approximations to r0 from Wm with respect to some inner product (·, ·)Ṽ .
If now, for some m, hm ∈ Wm−1, then rm := r0−hm ∈ span{r0}+Wm−1 =
Vm, that is, rm ∈ Vm ∩ V⊥

m = {0}, which implies hm = r0. But this is
impossible unless r0 ∈ Wm, that is, m = L, and we have thus established
that hm ∈ Wm \ Wm−1 for m = 1, . . . , L− 1.

Conversely, since hm ∈ Wm \ Wm−1 implies rm ∈ Vm+1 \ Vm for m =
1, . . . , L − 1, we see that {r0, r1, . . . , rL−1} (h0 = r0) is a basis of VL such
that, for every m = 1, . . . , L−1, {r0, r1, . . . , rm−1} is a basis of Vm. Defining
the inner product (·, ·)Ṽ such that {r0, . . . , rL−1} is an orthogonal basis of
VL leads to the desired conclusion. �

We have formulated these two theorems for the case of a sequence termin-
ating with hL = r0, as this is the situation when solving linear equations
in finite dimensions by MR and OR approximations, at least in the absence
of rounding error. When the sequence of approximations does not termin-
ate, we may proceed analogously to Theorem 4.12 with the difference that
the inner product is then defined on the union of all error spaces Vm and
we need not have convergence of the approximation to r0 in the associated
norm. Similar considerations apply for a formulation of Theorem 4.13 for a
nonterminating approximation sequence.

In summary, we conclude that, by allowing the inner product to vary, the
concept of MR and OR approximations becomes sufficiently general to in-
clude any reasonable sequence of approximations. Of course, this result is of
a rather academic nature since an application in which such approximation
problems arise often comes with a natural norm to be minimized. In view
of this one might say that methods should not be compared on the grounds
of whether they minimize a norm, but whether the norm being minimized is
appropriate for the problem at hand. However, it does show that the given
MR/OR framework includes all reasonable approximation schemes.

5. Krylov subspace methods and related algorithms

We now return to our original problem of approximating the solution of an
operator equation (1.1) using MR and OR approximations. As mentioned in
the introduction, this amounts to approximating the residual r0 = b −Ax0

of a given initial approximation x0 in the sequence of nested approximation
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spaces Wm = ACm, which are the images under A of a sequence of m-
dimensional nested correction spaces Cm ⊂ H. In accordance with (3.10),
the resulting residual spaces are Vm = span{r0} + ACm−1, and thus both
the approximation and residual spaces are determined by the sequence of
correction spaces. In this equation-solving setting the termination index L
defined in (4.4) becomes

L = min{m : r0 ∈ ACm} = min{m : b = A(x0 + c), c ∈ Cm}
= min{m : A−1b ∈ x0 + Cm},

(5.1)

that is, the MR and OR methods terminate when the exact solution is found,
at least in exact arithmetic. In general one has r0 ∈ Cm, so that a sufficient
condition for termination is the A-invariance of the correction space. The
angles which determine the rate of convergence (cf. (3.5), (3.11)) are now

∡(rMR
m , ACm) = ∡(Vm, ACm) = ∡(span{r0} + ACm−1, ACm).

We note that all statements about MR and OR approximations made
in the previous sections immediately carry over to the associated equation-
solving methods, in particular those of Theorems 3.4 and 3.5 as well as the
results of Proposition 3.8 on minimal and quasi-minimal residual smoothing.
Note also that, by the injectivity of A, relation (3.20) among the MR and
OR approximations of r0 implies

cMR
m = s2

mcMR
m−1 + c2mcOR

m

for the associated correction vectors cMR and cOR, and hence, by the identity
s2
m + c2m = 1, we obtain the analogous relation

xMR
m = s2

mxMR
m−1 + c2mxOR

m (5.2)

for the approximations of A−1b.
Although in principle any nested sequence of correction spaces leads to the

MR/OR methods discussed so far for solving (1.1), by far the most popular
of such subspace correction methods employ Krylov subspaces as correction
spaces, that is,

Cm = Km := Km(A, r0) := span{r0, Ar0, . . . , A
m−1r0}, m = 0, 1, . . . .

The name refers to a method introduced by Krylov (1931) for determining
divisors of the minimal polynomial of an operator for the purpose of com-
puting eigenvalues, in which such spaces were used (see also Householder
(1964, Section 6.1)). In this case the residual spaces

Vm = span{r0} + ACm−1 = span{r0} + AKm−1(A, r0) = Km(A, r0) = Cm

coincide with the correction spaces, so that Krylov subspace MR and OR
methods are special cases of the abstract MR and OR methods described in
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Section 3 with

Cm = Vm = Km(A, r0), Wm = AKm(A, r0) = Km(A,Ar0). (5.3)

The associated angles governing convergence in this case are thus

∡(rMR
m , AKm) = ∡(Km, AKm), (5.4)

and the termination index L may now be characterized by

L = min{m : A−1b ∈ x0 + Km(A, r0)}
= min{m : A−1r0 ∈ Km(A, r0)}
= min{m : Km(A, r0) = Km+1(A, r0)}. (5.5)

In the remainder of this section, we discuss some of the advantages of
Krylov subspaces as correction spaces, review the most important examples
of Krylov subspace algorithms, and recover some well-known results on
Krylov subspace methods by specializing the abstract results of Sections 3
and 4.

Before turning to Krylov subspace methods, however, we point out that
MR and OR methods which use non-Krylov correction spaces have received
increasing attention recently. Methods of this type are the EN-method
of Eirola and Nevanlinna (1989), the FGMRES method of Saad (1993),
the GMRESR algorithm of van der Vorst and Vuik (1994), the augmented
GMRES methods of Morgan (2000) and the GCROT method of de Sturler
(1999). We refer to Eiermann, Ernst and Schneider (2000) for an overview
and an analysis of these approaches.

5.1. Why Krylov subspaces?

The use of (shifted) Krylov spaces to construct approximate solutions to
linear equations, at least implicitly, is as old as classical stationary iteration
methods (see, e.g., Varga (1999)): given a splitting A = M − N with M
nonsingular, the induced stationary iteration

xm = Txm−1 + c, m = 1, 2, . . . (5.6)

with T = M−1N and c = M−1b generates the approximations

xm = x0 + (I + T + · · · + Tm−1)r0 ∈ x0 + Km(T, r0).

From this perspective, one can view Krylov subspace MR and OR meth-
ods as a cleverer strategy for choosing the approximations in x0 + Km or,
equivalently, as techniques which accelerate the convergence of the station-
ary iterative method (5.6). This was the motivation in Varga (1999), where
the term semi-iterative methods is used for this approach. In view of (5.5),
a subtle difference between such stationary iterations and Krylov subspace
MR and OR methods is that the latter terminate with the exact solution
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whenever the Krylov space becomes A-invariant, which is not the case for
stationary methods or those based on Chebyshev recursions (Varga 1999).

The main reason for the prevalence of Krylov subspaces as correction
spaces for MR/OR methods is the ease by which these can be generated,
namely by multiplication of a vector by A in each step, an inexpensive
operation whenever A is represented by a sparse or structured matrix or
when the action of A can be implemented efficiently without reference to a
matrix representation. Moreover, the fact that the correction and residual
spaces coincide for Krylov subspace methods allows the same basis to be
used for both in computations, which further reduces computing and storage
requirements.

Whether or not Krylov spaces are well suited as correction spaces will, in
view of (5.4) and the results of Section 3, depend on the behaviour of the
sequence of angles ∡(Km, AKm). There are classes of problems for which
this behaviour is very favourable. An example where the angles actually
tend to zero, which, in view of (3.15), implies superlinear convergence of the
MR and OR approximants, is given by second-kind Fredholm equations (see
Section 6.4). On the other hand, there are matrix problems of dimension n
for which ∡(Km, AKm) = π/2 for m = 1, 2, . . . , n−1, that is, no Krylov sub-
space method is able to improve the initial residual until the very last step.
The convergence properties of Krylov subspace methods will be discussed
in more detail in Section 6.

A great simplification in the analysis of Krylov subspace methods arises
from the representation

Km(A, r0) = {q(A)r0 : q ∈ Pm−1}, m = 1, 2, . . . ,

where Pm denotes the space of all complex polynomials of degree at most
m. The linear map

Pm−1 ∋ q �→ q(A)r0 ∈ Km(A, r0)

is thus always surjective but fails to be an isomorphism if and only if there
exists a nonzero polynomial q ∈ Pm−1 with q(A)r0 = 0. If such a polynomial
exists (e.g., if A has finite rank) then there also exists a (unique) monic
polynomial c = cA,r0

of minimal degree with c(A)r0 = 0 which is usually
called the minimal polynomial of r0 with respect to A. It is easy to see that
the degree of c equals the smallest integer m such that Km = Km+1 and
thus coincides with the index L introduced in (4.4) (cf. also (5.1) and (5.5)),

L = min{m : Km = Km+1} = min{deg q : q monic and q(A)r0 = 0}.
(5.7)

In other words, Pm−1 and Km are isomorphic linear spaces if and only if
m ≤ L.

Since every vector x ∈ x0 + Km is of the form x = x0 + qm−1(A)r0 for
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some qm−1 ∈ Pm−1, the corresponding residual r = b−Ax can be written as

r = r0 −Aqm−1(A)r0 = pm(A)r0, where pm(ζ) := 1 − ζqm−1(ζ) ∈ Pm.

Note that the residual polynomial pm satisfies the normalization condition
pm(0) = 1. Characterizations of the residual polynomials which belong to
the MR and OR iterates as well as their zeros were first given by Stiefel
(1958) in the Hermitian case and by Freund (1992) in the non-Hermitian
case; a concise presentation can be found in Eiermann et al. (2000).

Finally, we note that the MR and OR approximations of an arbitrary vec-
tor r ∈ H from a given sequence of nested spaces {Wm}Lm=0, dimWm = m,
can always be interpreted as Krylov subspace MR and OR approximations
of the solution of a linear operator equation: indeed, relation (4.3) uniquely
determines a linear operator A on the spaces {Vm}Lm=0, and A has VL as an
invariant subspace. If A is then extended to an invertible operator on the
entire space H, then the MR and OR approximation sequences for r coin-
cide with the corresponding Krylov subspace approximations for solving the
equation Ae = r with initial guess e0 = 0.

As already mentioned at the beginning of this section, the results of Sec-
tions 2, 3 and 4 also hold for the equation-solving MR and OR methods. For
the particular class of Krylov subspace methods many of these identities, in
particular (3.21) and (5.2), have been derived separately for each method, for
example in the papers of Brown (1991), Freund (1992), Gutknecht (1993a),
and Cullum and Greenbaum (1996). In these works, however, the sines
and cosines result from the Givens rotations needed to construct a QR de-
composition of the Hessenberg matrix analogous to (4.3) in the course of a
specific algorithm for computing the MR and OR approximations. Section 4,
specifically Theorem 4.5, reveals the more fundamental significance of these
rotation angles, namely as the angles between the subspaces Km(A, r0) and
AKm(A, r0). Moreover, all these relations have been derived in the previous
sections as properties of the abstract MR and OR approximation schemes
on nested subspaces, of which equation solving based on Krylov subspaces
is just one particular instance.

5.2. Algorithms based on orthonormal bases

The algorithms which have been proposed in the literature for calculating
MR and OR approximations for solving linear equations are based on one
of the coordinate representations introduced in Section 4. The novelty, in
the context of equation-solving, is that one requires the coordinates of the
correction vector in Cm as well as those of the residual approximation in Wm.

Using an orthonormal basis of Wm

The trivial construction of the MR/OR approximations in terms of an ortho-
normal basis of Wm described in Section 4.1 becomes a little more interesting
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when solving equations. Given an ascending basis Cm = [c1, . . . , cm] of Cm,
the most direct approach is to orthonormalize the image sequence {Acj}
and then proceed as in Section 4.1. Because the spaces are nested, the
orthonormalization results in a QR decomposition

ACm = WmRm (5.8)

with an upper triangular matrix Rm ∈ C
m×m and a set of orthonormal

basis vectors Wm = [w1, . . . ,wm] of Wm. The MR approximation xMR
m of

the solution of (1.1) with respect to Cm is given by xMR
m = x0+CmyMR

m with
a coefficient vector yMR

m ∈ C
m. By (4.1) the coefficient vector of PWm

r0 with
respect to Wm is W ∗

mr0, hence we must have ACmyMR
m = WmW ∗

mr0, which,
in view of (5.8), leads to yMR

m = R−1
m W ∗

mr0. If no Galerkin breakdown
occurs at this step, that is, if (r0,wm) �= 0, then the OR approximation
xOR
m = x0 + CmyOR

m is defined and may be computed following (4.2) by
solving

RmyOR
m =




(r0,w1)
...

(r0,wm−1)
‖rMR

m−1‖2/(wm, r0)


 , (5.9)

or by using (5.2) and noting cm = |(wm, r0)|/‖rMR
m−1‖, sm =

√
1 − c2m.

The main computational expense of this algorithm lies in the orthogon-
alization process and the solution of a triangular system whenever the ap-
proximations are desired. In the Krylov subspace case (5.3), the correc-
tion spaces are C1 = span{r0} and Cm+1 = span{r0} + Wm,m = 1, . . . , L.
An obvious candidate for the new vector in the ascending basis of Cm+1 is
cm+1 := wm, a vector which is constructed in the previous step by ortho-
normalizing Awm−1 against the orthonormal basis of Wm−1. This choice
results in Cm+1 = [r0,w1, . . . ,wm], so that no separate basis for the correc-
tion spaces is necessary. Although it appears to be the most straightforward
implementation, this method was only recently proposed for computing MR
approximations by Walker and Zhou (1994).

The more well-known generalized conjugate residual (GCR) algorithm,
introduced by Eisenstat, Elman and Schultz (1983), can be derived from
the fact that the image under A of the MR correction cMR

m is the best
approximation WmW ∗

mr0 of r0 from Wm: if the basis Cm is taken to consist
of the pre-images under A of a set of orthonormal basis vectors Wm of Wm,
then we obtain

cMR
m = A−1WmW ∗

mr0 = CmW ∗
mr0.

In this case the coefficient vector yMR
m of the MR correction with respect

to Cm consists simply of the Fourier coefficients W ∗
mr0, that is, no triangu-

lar system needs to be solved. The corresponding OR coefficient vector is
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obtained, again in view of (4.2), by

yOR
m = [(r0,w1), . . . , (r0,wm−1), ‖rMR

m−1‖2/(wm, r0)]
⊤. (5.10)

The associated residual vectors may be formed by using the same coefficient
vectors, but with respect to the orthonormal basis Wm.

For the Krylov subspace GCR algorithm different ways of extending the
bases Cm and Wm have been proposed in the literature. The older vari-
ant, introduced in Eisenstat et al. (1983), generates in step m the new
basis vector wm by orthonormalizing Arm−1 against the previously gener-
ated orthonormal basis of Wm−1, while simultaneously updating rm−1 to
obtain cm = A−1wm. This approach has the drawback that it fails to ex-
tend the Krylov space whenever two consecutive MR approximations coin-
cide, that is, when a Galerkin breakdown occurs. For this reason, Eisenstat
et al. (1983) state that the algorithm should only be used for linear systems
where A is positive real, which means that its Hermitian part (A+A∗)/2 is
positive definite. As will be explained in Section 6.1, the algorithm may in
fact be used provided 0 �∈ W (A), a slightly more general criterion. An easy
remedy for this deficiency is to extend the basis Wm−1 by instead ortho-
gonalizing Awm−1 against Wm−1, which results in the Arnoldi process for
Wm = Km(A,Ar0) for generating the wm-sequence, while the cm-sequence
is again maintained such that Acm = wm. This observation is pointed out in
Rozložńık and Strakoš (1996), where many equivalent MR implementations
are also compared with regard to their numerical stability.

The GCR algorithm belongs to the vast lineage of generalizations of the
conjugate gradient and conjugate residual methods of Hestenes and Stiefel
(1952), and we refer to Ernst (2000) and the monograph of Greenbaum
(1997) for systematic surveys of this family of Krylov subspace methods.

Using an orthonormal basis of Vm

The equation-solving Krylov subspace MR/OR algorithms based on the ab-
stract scheme of Section 4.2 are the generalized minimum residual method
(GMRES) of Saad and Schultz (1986) and the full orthogonalization method
(FOM) introduced by Saad (1981). These algorithms proceed by success-
ively constructing an orthonormal basis {v1, . . . , vm} of Vm = Km(A, r0)
beginning with V1 = span{r0}. We observe that this is exactly the Gram–
Schmidt procedure introduced in (4.5) with wm = Avm, m = 1, . . . , L, which
in this setting is known as the Arnoldi process. In this case equation (4.3)
reads

AVm = Vm+1H̃m = VmHm + [0, . . . ,0, ηm+1,mvm+1] (5.11)

and the upper Hessenberg matrix H̃m is given by

H̃m = [(Avk, vj)] ∈ C
(m+1)×m, j = 1, . . . , k + 1, k = 1, . . . ,m. (5.12)
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Equation (5.12) reveals that, in the Krylov subspace case, the Hessenberg
matrix Hm has a closer connection to the operator A than merely express-
ing the basis Wm in terms of Vm+1 as in equation (4.3): here it is also
the orthogonal section of A onto Km, that is, it represents the linear map
PKm

A|Km
: Km → Km with respect to the basis Vm. To compute the

coordinate vector yMR
m of the MR approximation xMR

m = x0 + VmyMR
m ,

we note that, in view of (5.11), the corresponding residual has the form
rMR
m = r0 − Vm+1H̃myMR

m = Vm+1(βu1 − H̃myMR
m ), and hence the min-

imum residual condition again determines yMR
m as the solution of the least-

squares problem (4.7). Just as in Section 4.2, the GMRES algorithm uses a
QR factorization of H̃m constructed from Givens rotations to solve this
least-squares problem and thus, by Theorem 4.5, the rotation angles of
these Givens rotations coincide with the angles (5.4) between the subspaces
Km(A, r0) and AKm(A, r0).

The FOM implementation of the OR approach, which is also based on
the Arnoldi process (cf. (5.11)), computes the coordinate vector yOR

m ∈ C
m

of the OR approximation xOR
m = x0 + VmyOR

m just as in Lemma 4.1 as the
solution of the linear system (4.8), which requires Hm that be nonsingular.
We recall from Remark 4.2 that this condition is consistent with our previous
result, namely that ∡(Km, AKm) �= π/2.

The GMRES and FOM algorithms and the variants mentioned above im-
plement the MR and OR approach for solving (1.1) in the case of general
injective A. The method of choice for constructing an orthonormal basis of
Vm = Km(A, r0) is the Arnoldi process, of which there exist several modific-
ations with varying degrees of stability in the presence of round-off error (see,
e.g., the discussions in Rozložńık, Strakoš and Tůma (1996) and Greenbaum,
Rozložńık and Strakoš (1997)). Whenever A is self-adjoint, the Arnoldi pro-
cess simplifies to the Hermitian Lanczos process (Lanczos 1950), with the
result that the Hessenberg matrix in the fundamental relation (5.11) is tri-
diagonal, with all the computational benefits mentioned at the beginning
of Section 4.3. In particular, the short recurrences for the basis vectors al-
low the approximations and residuals to be inexpensively obtained by clever
update formulas. Well-known algorithms that follow this approach to im-
plement the MR and OR approximations in the self-adjoint and positive
definite case are the CR/CG algorithms of Hestenes and Stiefel (1952), and
an MR/OR pair of algorithms for the self-adjoint but possibly indefinite
case is MINRES/CG due to Paige and Saunders (1975).

5.3. Using a non-orthogonal basis

In this section we continue our discussion of Krylov subspace MR and OR
algorithms for the iterative solution of (1.1) with MR/OR pairs such as
QMR/BCG and TFQMR/CGS, which work with a non-orthogonal basis of
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the Krylov space. These represent examples of the MR/OR approximations
discussed in Section 4.3 for solving equations using Krylov spaces.

To this end, let v1, v2, . . . , vL ∈ H be any set of ascending basis vectors,
i.e., linearly independent vectors such that {v1, v2, . . . , vm} forms a basis
of Vm = Km(A, r0) for m = 1, . . . , L (in particular, r0 = βv1 for some
0 �= β ∈ C). Such a basis leads naturally to a (quasi-)minimal residual as
well as to a (quasi-)orthogonal residual method. Since, for every 1 ≤ m ≤ L,
Avm ∈ span{v1, v2, . . . , vm+1}, where we set vL+1 = 0, there exists an upper
Hessenberg matrix H̃m ∈ C

(m+1)×m such that (cf. (4.3) and (5.11))

AVm = VmHm + [0, . . . ,0, ηm+1,mvm+1] = Vm+1H̃m. (5.13)

As in (5.12), the mth column of H̃m contains the coefficients of Avm ∈
Km+1(A, r0) with respect to the basis vectors v1, . . . , vm+1. We are thus in
the situation of Section 4.3 with Vm = Km(A, r0) and Wm = AKm(A, r0).
Defining the auxiliary inner products (·, ·)V on VL and (·, ·)v on the co-
ordinate space C

L as in (4.22) and (4.21), respectively, we obtain the QMR
approximation

xQMR
m := x0 + VmyQMR

m = x0 + cQMR
m

of the solution A−1b by requiring that Ac
QMR
m be the MR approximation

to r0 with respect to the inner product (·, ·)V . Just as in Section 4.3, the

coefficient vector y
QMR
m ∈ C

m is characterized as the unique solution of the
least-squares problem (4.7). Analogously, the associated QOR approxima-
tion

xQOR
m := x0 + VmyQOR

m = x0 + cQOR
m

is obtained if AcOR
m is the OR approximation of r0 with respect to the inner

product (·, ·)V , that is, if the coordinate vector y
QOR
m ∈ C

m satisfies the
linear system of equations (4.25).

As stated in Section 4, the residuals of the QMR and QOR iterates are
the errors of the MR and OR approximations of r0 with respect to the inner
product (·, ·)V , and therefore the results of Theorem 3.4 on the residual

norms hold for the QMR and QOR residuals r
QMR
m = b − Ax

QMR
m and

r
QOR
m = b − Ax

QOR
m , albeit with respect to the norm ‖ · ‖V . The same

applies to the statements of Theorem 3.5 and Corollary 3.6 for the QMR
and QOR approximations w

QMR
m = Ac

QMR
m and w

QOR
m = Ac

QOR
m , where

the angles are understood with respect to the inner product (·, ·)V . Finally,
the bounds in Theorem 4.8 relating the two different norms as well as the
assertions of Propositions 4.9, 4.10 and 4.11 all hold for the QMR and QOR
residuals, respectively.

The motivation for using non-orthogonal bases in Krylov subspace MR
and OR methods comes from the potential savings in storage and computa-
tion when using algorithms for generating a basis of Km(A, r0) which lead
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to a Hessenberg matrix in relation (5.13) with only a small number of non-
zero bands. A tridiagonal Hessenberg matrix can be achieved using the
non-Hermitian Lanczos process. The non-Hermitian variant of the Lanczos
process is generally less expensive than the Arnoldi process, requiring in
addition the generation of a basis of a Krylov space with respect to the
adjoint A∗ and thus storage for several additional vectors and, which can
be expensive, multiplication by A∗ at each step. The result are two bi-
orthogonal, in general non-orthogonal, bases. The non-Hermitian Lanczos
process may break down before the Krylov space becomes stationary, and
in finite arithmetic this leads to numerical instabilities in the case of near-
breakdowns. This problem is addressed by so-called look-ahead techniques
for the non-Hermitian Lanczos process (cf. Freund, Gutknecht and Nachtigal
(1993), Gutknecht (1997) and the references therein), which result in a pair
of block-biorthogonal bases and a Hessenberg matrix which is as close to
tridiagonal form as possible while maintaining stability.

Remark 5.1. We have mentioned that Krylov subspace QMR/QOR meth-
ods have the advantage of being able to work with an arbitrary basis of
the Krylov space, in particular also with a non-orthogonal basis. As the
bounds (4.24) show, how close the QMR iterates come to minimizing the
residual in the original norm depends on the Euclidean condition number of
the Gram matrices Mm, that is, on the largest and smallest singular value
of Vm = [v1, . . . , vm] (interpreted as an operator from C

m to Km(A, r0)).
The largest singular value of Vm is bounded by

√
m + 1 if the basis vectors

are normalized with respect to the original norm. When the look-ahead
Lanczos algorithm is used to generate the basis, bounds on the smallest
singular value may be obtained depending on the look-ahead strategy being
followed (Freund et al. 1993).

Examples: QMR/BCG and TFQMR/CGS

We now consider two specific examples of Krylov subspace QMR/QOR al-
gorithms, the QMR method of Freund and Nachtigal (1991) and the BCG
method due to Lanczos (1952) as well as the TFQMR and CGS meth-
ods due to Freund (1993) and Sonneveld (1989), respectively. As another
QMR/QOR pair, we mention the QMRCGSTAB method of Chan, Gallo-
poulos, Simoncini, Szeto and Tong (1994) and BICGSTAB developed by
van der Vorst (1992) and Gutknecht (1993b).

The QMR algorithm of Freund and Nachtigal proceeds exactly as de-
scribed above, with the basis of the Krylov space generated by the look-
ahead Lanczos algorithm. The QOR counterpart of Freund and Nachtigal’s
QMR is the BCG algorithm, the iterates of which are characterized by

xBCG
m ∈ x0 + Km(A, r0), rBCG

m ⊥ Km(A∗, r̃0).
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The algorithm proceeds by generating a basis of the Krylov space Km(A∗, r̃0),
where r̃0 is an arbitrary starting vector, simultaneously with a basis Vm of
Km(A, r0) in such a way that these two bases are biorthogonal. If y ∈ C

m

denotes the coefficient vector of the BCG approximation with respect to Vm,
then the biorthogonality requirement

rBCG
m = Vm+1(βu1 − H̃my) ⊥ Km(A∗, r̃0),

implies rBCG
m ⊥V Vm, which is equivalent to Hmy = βu1. The last equality

identifies xBCG
m as the mth QOR iterate.

To treat the TFQMR/CGS pair, recall that the residual of any Krylov
subspace approximation can be expressed as rm = pm(A)r0 in terms of a
polynomial pm of degree m satisfying pm(0) = 1. Sonneveld (1989) defined
the CGS iterate xCGS

m ∈ x0 + K2m(A, r0) such that

rCGS
m = [pm(A)]2r0, where rBCG

m = pm(A)r0.

It is shown by Freund (1993) that xCGS
m = x0 + Y2mz2m for a coefficient

vector z2m ∈ C
2m, where K2m(A, r0) = span{y1, . . . ,y2m}. Moreover, there

exists a sequence {wn} such that r0 = βw1 and

AYn = Wn+1H̃n, n = 1, . . . , 2L.

In terms of this sequence, we find

rCGS
m = W2m+1

(
βu1 − H̃2mz2m

)
,

where H2mz2m = βu1, that is,

rCGS
m ⊥W span{w1, . . . ,w2m} = K2m(A, r0),

which identifies CGS as an OR method. The corresponding MR method is
Freund’s transpose-free QMR method TFQMR (cf. (Freund 1993, Freund
1994)), the iterates of which are defined as

xTFQMR
n = x0 + Ynzn, n = 1, . . . , 2L,

where the coefficient vector zn ∈ C
n solves the least-squares problem

‖βu1 − H̃nzn‖2 → min
z∈Cn

.

In other words,

‖rTFQMR
n ‖W = min

x∈x0+Kn(A,r0)
‖b −Ax‖W .

Comparison of residuals
The availability of a sequence of vectors {ṽj}j≥1 which is biorthogonal to the
Krylov basis {vj} permits a convenient representation of the QOR residual
via (4.11). If

(vj , ṽk) = δjkdj , j, k = 1, . . . , L,
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and if both sequences are normalized to one, then, since the MR-residual
at step m − 1 lies in Wm−1 ⊂ Vm, we have rMR

m−1 =
∑m

j=1(r
MR
m−1, ṽj/dj)vj .

Inserting r −w = rMR
m−1 in (4.11) then yields

rQOR
m = (rMR

m−1, ŵm+1)V vm+1 = vm+1

m∑

j=1

gj

dj
(rMR

m−1, ṽj)vj ,

which, after taking norms and applying the Cauchy–Schwarz inequality, be-
comes

‖rQOR
m ‖ ≤ ‖rMR

m−1‖
m∑

j=1

|gj |
|dj |

.

This bound is a slightly improved version of a bound by Hochbruck and
Lubich (1998).

6. Residual and error bounds

The usual residual and error bounds for Krylov subspace MR methods follow
directly from the defining equation (1.2a),

‖rMR
m ‖ = min

c∈Km(A,r0)
‖b −A(x0 + c)‖ = min

c∈Km(A,r0)
‖r0 −Ac‖,

and the close connection between Krylov subspaces and polynomials (see
Section 5.1) which immediately leads to

‖rMR
m ‖ = min

q∈Pm−1

‖r0 −Aq(A)r0‖ = min
p∈Pm

p(0)=1

‖p(A)r0‖,

that is, to

‖rMR
m ‖
‖r0‖

≤ min
p∈Pm

p(0)=1

‖p(A)‖.

If A is normal, the right-hand side represents a standard polynomial approx-
imation problem,

min
p∈Pm

p(0)=1

‖p(A)‖ = sup
p∈Pm

p(0)=1

max
λ∈Λ(A)

|p(λ)| ≤ min
p∈Pm

p(0)=1

max
λ∈Ω

|p(λ)|, (6.1)

where Ω ⊂ C is an arbitrary compact set which contains Λ(A), the spectrum
of A (of course, a useful bound will only be obtained when 0 /∈ Ω). Most
bounds, for instance, the standard bound for the conjugate gradient method,
are derived in this way.

If A is not normal, then it is no longer true that its spectrum determ-
ines the convergence behaviour of a Krylov MR method (see Section 6.3).
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Subsequent investigations into whether larger sets in the complex plane asso-
ciated with A such as its field of values (Eiermann 1993) or pseudospectrum
(Trefethen 1992) can predict convergence behaviour have to date failed to
produce an analogous theoretical tool in the non-normal case. We refer to
Embree (1999) for a detailed discussion of these issues.

In this section we will concentrate on bounds for the residual and er-
ror norms of Krylov subspace methods which are obtained by specializing
Theorem 3.4. A similar approach in this direction has been taken by Saad
(2000). Our goal is to relate properties of the operator A to the decay of
the numbers sm.

6.1. Residual bounds

Estimates based on the angles between Km := Km(A, r0) and AKm natur-
ally involve the field of values of A, which is defined by

W (A) :=

{
(Av , v)

(v , v)
: 0 �= v ∈ H

}
.

Theorem 6.1. The residual with index m of a Krylov MR method satisfies

‖rMR
m ‖
‖r0‖

≤
m∏

j=1

√
1 − νj(A)ν̃j(A−1), (6.2)

where the quantities νj(A) and ν̃j(A
−1) are defined as

νj(A) := inf{|z| : z ∈ W (A|Sj
},

ν̃j(A
−1) := inf{|z| : z ∈ W (A−1|ASj

}

and Sj ⊆ H denotes a subspace which contains span{rMR
j−1} = Kj∩(AKj−1)

⊥.

Proof. From (3.15), the fact that sj = sin ∡(rMR
j−1 , AKj) as well as rMR

j−1 ∈
Kj ∩ (AKj−1)

⊥, we conclude

‖rMR
m ‖
‖r0‖

=
m∏

j=1

sj =
m∏

j=1

sin ∡(rMR
j−1 , AKj)

=

m∏

j=1

(
1 − sup

v∈Kj

|(rMR
j−1 , Av)|2

‖rMR
j−1‖2 ‖Av‖2

)1/2

≤
m∏

j=1

(
1 −

|(rMR
j−1 , ArMR

j−1)|2

‖rMR
j−1‖2 ‖ArMR

j−1‖2

)1/2

=
m∏

j=1

(
1 −

∣∣∣∣∣
(ArMR

j−1 , r
MR
j−1)

(rMR
j−1 , r

MR
j−1)

∣∣∣∣∣

∣∣∣∣∣
(rMR

j−1 , ArMR
j−1)

(ArMR
j−1 , ArMR

j−1)

∣∣∣∣∣

)1/2
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=
m∏

j=1

(
1 −

∣∣∣∣∣
(ArMR

j−1 , r
MR
j−1)

(rMR
j−1 , r

MR
j−1)

∣∣∣∣∣

∣∣∣∣∣
(A−1ArMR

j−1 , ArMR
j−1)

(ArMR
j−1 , ArMR

j−1)

∣∣∣∣∣

)1/2

≤
m∏

j=1

(
1 − inf

s∈Sj

∣∣∣∣
(As, s)

(s, s)

∣∣∣∣ inf
t∈ASj

∣∣∣∣
(A−1t , t)

(t , t)

∣∣∣∣
)1/2

=

m∏

j=1

(
1 − νj(A)ν̃j(A

−1)
)1/2

. �

For the choice Sj = H, we obtain the following simpler bound.

Corollary 6.2. The MR residual with index m satisfies

‖rMR
m ‖
‖r0‖

≤
(
1 − ν(A)ν(A−1)

)m/2
, (6.3)

where ν(A) := inf{|z| : z ∈ W (A)}.
Of course, the bound of Corollary 6.2 only yields a reduction provided

0 �∈ W (A), which also implies 0 �∈ W (A−1); see Horn and Johnson (1991,
p. 66).

If A is a positive real matrix, that is, if its Hermitian part H := (A+A∗)/2
is positive definite, then ν(A) = λmin(H) > 0 and

ν(A−1) = min
v∈H

(A−1v , v)

(v , v)
= min

w∈H

(w , Aw)

(w ,w)

(w ,w)

(Aw , Aw)
≥ λmin(H)

‖A‖2
,

in view of which Corollary 6.2 yields a bound first given by Elman (1982):

‖rMR
m ‖
‖r0‖

≤
(

1 − λmin(H)2

λmax(ATA)

)m/2

(6.4)

(for a collection of similar bounds, see Joubert (1994)). Since (see the proof
of Theorem 6.1)

‖rMR
m ‖

‖rMR
m−1‖

= sm ≤ 1 − ν(A)ν(A−1) < 1,

the residual norms of a Krylov MR method decrease strictly monotonically if
A is positive real or, slightly more generally, if W (A) is contained in any half-
plane {z : Re (eiαz) > 0} with α ∈ R. Note that, in view of Corollary 3.2,
this implies that Galerkin breakdowns can be excluded for OR methods
applied to such systems.

Remark 6.3. If, in the derivation of the residual bound (6.2), one makes
the cruder estimate

‖rMR
j ‖2

‖rMR
j−1‖2

≤ 1 −
|(rMR

j−1 , ArMR
j−1)|2

‖rMR
j−1‖2 ‖ArMR

j−1‖2
≤ 1 − inf

v∈H

|(v , Av)|2
‖v‖2 ‖Av‖2

=: sin2(γ(A)),
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where γ(A) is the largest angle between a nonzero vector v ∈ H and its
image Av , one thus obtains the bound sinm γ(A) on the residual reduction
after m steps. The angle γ(A) was introduced by Wielandt (1996) (see also
Gustafson and Rao (1996)).

6.2. Error bounds

When solving a linear system (1.1) approximately using successive iterates
xm, the residual rm = b − Axm may be the only computable indication
of the progress of the solution process. The quantity of primary interest,
however, is the error em = x − xm = A−1rm.

For Krylov subspace methods, we have xm ∈ x0 + Km, so that em =
e0 − v for some v ∈ Km. Of course, the best one could do is to select this
v ∈ Km as the best approximation to e0 from Km(A, r0) = AKm(A, e0).
This would correspond to computing the MR approximation of e0 with
respect to the sequence of spaces Wm = AKm(A, e0), a process which would
require knowledge of the initial error and hence the solution x . The relation
between residuals and errors, however, allows us to bound the error of the
MR approximation with respect to this best possible approximation.

Lemma 6.4. The error eMR
m of the MR approximation satisfies

‖eMR
m ‖ ≤ κ(A) inf

v∈Km

‖e0 − v‖, (6.5)

where κ(A) = ‖A‖ ‖A−1‖ denotes the condition number of A.

Proof. We have

‖rMR
m ‖ = min

w∈AKm

‖r0 −w‖ = min
v∈Km

‖A(e0 − v)‖ ≤ ‖A‖ min
v∈Km

‖e0 − v‖,

and thus the assertion follows from ‖eMR
m ‖ = ‖A−1rMR

m ‖ ≤ ‖A−1‖ ‖rMR
m ‖.

�

Thus, the error of the MR approximation is within the condition number
of A of the error of the best approximation to e0 from the Krylov space. In
view of the relation (3.16), this translates to the following bound for the OR
error:

‖eOR
m ‖ ≤ κ(A)

cm
inf

v∈Km

‖e0 − v‖. (6.6)

However, a stronger bound can be obtained if the field of values of A is
bounded away from the origin.

Theorem 6.5. If ν(A) = inf{|z| : z ∈ W (A)} > 0, then the Krylov OR
error satisfies

‖eOR
m ‖

‖e0‖
≤ ‖A‖

ν(A)
inf

v∈Km

‖e0 − v‖.
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Proof. From the characterization of the OR approximation we have eOR
m =

e0 − v for some v ∈ Km(A, r0) subject to

rOR
m = AeOR ⊥ Km(A, r0) ⇔ eOR

m ⊥ A∗
Km(A, r0).

This means that the OR error is obtained as the error of an OR approx-
imation of e0 from the space Km(A, r0) orthogonal to A∗Km(A, r0). Thus,

eOR
m = (I − PA∗Km

Km
)e0 and Theorem 2.9 implies

‖eOR
m ‖

‖e0‖
≤ ‖I − PA∗Km

Km
‖ =

1

cos ∡(Km, A∗Km)
.

We bound the cosine of the largest canonical angle between Km and A∗Km by

cos2 ∡(Km, A∗
Km) = sup

u∈Km

sup
v∈Km

|(u , A∗v)|2
‖u‖2 ‖A∗v‖2

≥ sup
v∈Km

|(v , A∗v)|2
‖v‖2 ‖A∗v‖2

= sup
v∈Km

(Av , v)

(v , v)

(A∗v , v)

(A∗v , A∗v)

≥ inf
v∈Km

∣∣∣∣
(Av , v)

(v , v)

∣∣∣∣ inf
v∈Km

∣∣∣∣
(A∗v , v)

(A∗v , A∗v)

∣∣∣∣ ≥ ν(A)ν
(
(A∗)−1

)

= ν(A)ν(A−1) ≥ ν(A)2

‖A‖2
,

where the last inequality has already been used to prove (6.4). �

If the Hermitian part H := (A+A∗)/2 of A is positive definite, that is, if
A is positive real, then (H·, ·) is an inner product and thus defines a norm
‖ · ‖H on H. The next theorem, which is due to Starke (1994), shows that
the OR error measured in this norm is optimal up to a factor which depends
on the skew-Hermitian part S := (A−A∗)/2 of A.

Theorem 6.6. If A is positive real with Hermitian and skew-Hermitian
parts H and S, then the Krylov OR error satisfies

‖eOR
m ‖H ≤

(
1 + ρ(H−1S)

)
inf

v∈Km

‖e0 − v‖H ,

where ρ(H−1S) denotes the spectral radius of H−1S.

Proof. Since rOR
m = AeOR

m ⊥ Km, noting that (Hv , v) = Re (Av , v),
(Sv , v) = iIm (Av , v) and eOR

m − e0 ∈ Km, we have

‖eOR
m ‖2

H = (HeOR
m , eOR

m )

≤ |(AeOR
m , eOR

m )| = |(AeOR
m , e0)| = |(AeOR

m , e0 − v)|
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for arbitrary v ∈ Km, and therefore

‖eOR
m ‖2

H ≤ |(HeOR
m , e0 − v) + (SeOR

m , e0 − v)|.
The first term is bounded by ‖e0 − v‖H‖eOR

m ‖H , and for the second term
we obtain

|(SeOR
m , e0 − v)| = |(H1/2H−1/2SH−1/2H1/2eOR

m , e0 − v)|
≤ ‖H−1/2SH−1/2H1/2eOR

m ‖‖e0 − v‖H
≤ ‖H−1/2SH−1/2‖‖eOR

m ‖H‖e0 − v‖H
= ρ(H−1S)‖eOR

m ‖H‖e0 − v‖H ,

which, together with the bound for the first term, yields the assertion. �

An immediate consequence of Theorem 6.6 is that, for a Hermitian posit-
ive definite operator A, the OR method, which simplifies to the well-known
conjugate gradient method in this case, yields the smallest possible error in
the A-norm.

Remark 6.7. In view of the remark preceding Lemma 6.4 that the best
approximation of the initial error e0 from the Krylov space Km(A, r0) =
AKm(A, e0) has the same structure as the best approximation of r0 from
AK(A, r0) with r0 replaced by e0, the infimum in (6.5) and (6.6) may be
bounded in an analogous manner to the MR residual in Theorem 6.1, Co-
rollary 6.2 and Remark 6.3.

6.3. Quantities that determine the rate of convergence

We begin by recalling that, as a result of Theorem 3.4, the residual norm his-
tory of the MR and OR methods is completely determined by the sequence of
angles between the spaces Vm and Wm, which specialize to Km(A, r0) and
AKm(A, r0), respectively, for Krylov subspace methods. In other words,
convergence depends only on the sequence of these spaces and their relative
position. Furthermore, Theorem 4.5 and the ensuing discussion revealed
that the sines and cosines of these angles appear as the parameters of the
Givens rotations in the recursive construction of the QR-factorizations (4.12)
of the Hessenberg matrices H̃m, m = 1, . . . , L. As a consequence, we note
that all the information regarding the progress of the solution algorithm is
contained in the Q-factors. In particular, the residual norm history of the
MR/OR approximations associated with the Arnoldi relations

AVm = Vm+1H̃m = Vm+1Qm

[
Rm

0

]
, m = 1, . . . , L,

is independent of the matrices Rm. For later reference, we state this obser-
vation as follows.
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Lemma 6.8. Let L denote the termination index (5.7), and

AVL = VLHL = VLQ
H
L−1RL = V̂LRL

the Arnoldi decomposition (5.11). Further, let R̃L be any nonsingular upper
triangular matrix and define Ã by

ÃVL = VLQ
H
L−1R̃L = V̂LR̃L.

Then A and Ã are MR-equivalent in the sense that the Krylov MR method
produces identical residual vectors rMR

m for both systems Ax = b and Ãx =
b̃ provided the starting vectors x0 and x̃0 are chosen such that b − Ax0 =
b̃ − Ãx̃0.

Furthermore, Lemma 6.8 reveals that there is a particularly simple mat-
rix Ã which, for the same initial residual r0, displays the identical MR/OR
residual norm history, namely the unitary matrix obtained by setting RL

(and thus all {Rj}Lj=1) equal to the identity. If VL is a proper subspace of

H, Ã may be made unique by extending it to be the identity on the comple-
mentary space. This observation, that for each linear system of equations
there exists a linear system of equations with a unitary matrix for which
MR/OR display the identical convergence behaviour, was first pointed out
by Greenbaum and Strakoš (1994).

Lemma 6.8 is the point of departure for an approach for computing con-
vergence bounds for GMRES given in Liesen (2000). This is obtained by
applying the standard convergence bound (6.1) to the MR-equivalent matrix
QL−1, which yields

‖rMR
m ‖ ≤ min

p∈Pm

p(0)=1

max
λ∈Λ(QL−1)

|p(λ)|.

(We note that Liesen used somewhat more complicated MR-equivalent sys-
tems.) Since such a bound involves quantities not available until step L,
which generally far exceeds the feasible number of iteration steps, Liesen
suggests approximating the quantities in the above bound by those avail-
able at iteration step m ≪ L. It is, however, clear that this works only
under additional assumptions since, in general, Qm need not contain any
information about the progress of the MR iteration beyond step m. It is not
difficult to show that any given sequence of residual norms ‖r0‖ ≥ ‖rMR

1 ‖ ≥
· · · ≥ ‖rMR

m ‖ can be complemented in such a way that the iteration stagnates
from step m + 1 until step L− 1, that is, ‖rMR

m ‖ = · · · = ‖rMR
L−1‖.

As another consequence of Lemma 6.8, quantities such as the singular
values of H̃m, which coincide with those of Rm, can play no role in the rate
of convergence.
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Lemma 6.9. For any given linear system of equations (1.1), there is a lin-
ear system with coefficient matrix Ã for which GMRES exhibits the identical
convergence history, and for which Ã has arbitrarily prescribed nonzero sin-
gular values.

Proof. Let L denote the termination index of A with respect to the given
system as defined in (5.7). For any Krylov subspace method applied to this
system, only the L singular values of A|KL

are noticeable, hence A can be
defined arbitrarily on K⊥

L . To prescribe the singular values of A|KL
, let

R̃L denote an upper triangular L × L matrix possessing L arbitrary non-
zero singular values. With V̂L denoting the Paige–Saunders basis (4.17), the

matrix Ã by ÃV̂L = V̂LR̃L clearly possesses the same set of singular values
and, by Proposition 6.8, Ã is MR-equivalent to A. �

By the same technique, we can prescribe, for fixed m, the singular values
of H̃m since, in view of (4.12), these coincide with those of Rm.

For the singular values of the square Hessenberg matrices Hm there is a
slight complication. From (4.19) we recall that a QR-factorization of Hm is
given by

Hm = QH
m−1

[
Rm−1 r

0 τ

]
.

The mth plane rotation is determined so that the vector [τ ηm+1,m]⊤ is
rotated to the vector [rm,m 0]⊤, where rm,m is the entry in the (m,m)-
position of Rm (cf. (4.15)). This implies that τ = cmrm,m. Thus, if we
prescribe Rm to be a diagonal matrix, then the singular values of Hm are
given by |r1,1|, . . . , |rm−1,m−1|, cm|rm,m| and thus can be selected arbitrarily.
The only exception occurs when cm = 0, that is, Hm is singular and clearly
only m− 1 singular values can be chosen freely.

We remark that the same proof shows that, also in the case of an OR
method, neither the singular values of A nor those of H̃m or Hm determine
the convergence behaviour.

We conclude this subsection with a brief discussion of the role eigenvalues
play for the convergence of MR methods. The bound (6.1) shows that
the spectrum controls the convergence behaviour if A is normal. There are,
however, examples of non-normal matrices which show that, in general, Λ(A)
may have no influence: Greenbaum, Strakoš and Ptak (1996) demonstrate
that, for any nonincreasing finite sequence of positive real numbers ρ0 ≥
ρ1 ≥ · · · ≥ ρn−1 and any choice of (not necessarily distinct) nonzero complex
numbers λ1, λ2, . . . , λn, one can construct a matrix A ∈ C

n×n and an initial
residual r0 with Λ(A) = {λ1, λ2, . . . , λn} and ‖rMR

m ‖ = ρm (m = 0, 1, . . . , n−
1). We illustrate this result by one of their striking examples. Any matrix
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A in Frobenius form,

A =




0 0 · · · 0 −α0

1 0 · · · 0 −α1

0 1 · · · 0 −α2
...

. . .
...

...
0 0 · · · 1 −αn−1



∈ C

n×n,

has ζn + αn−1ζ
n−1 + · · · + α1ζ + α0 as its characteristic polynomial, so its

eigenvalues can be arbitrarily prescribed. If we choose b and r0 such that
r0 = u1 is the first unit vector, then, for m = 1, 2, . . . , n− 1, the approxim-
ation space AKm(A, r0) is the span of the unit vectors u2,u3, . . . ,um. The
best approximation to r0 from this space is obviously the null vector leading
to ‖r0‖ = ‖rMR

1 ‖ = · · · = ‖rMR
n−1‖ = 1 independently of the chosen spectrum.

In general it is therefore impossible to predict the convergence behaviour of
an MR method such as GMRES (and of any other Krylov subspace method)
on the basis of the eigenvalue distribution of A alone. Although this fact
has been emphasized in several recent papers, it is still a widespread but
nonetheless incorrect belief that spectral properties of the coefficient matrix
(i.e., without any additional assumptions on its departure from normality)
determine the speed of convergence of GMRES.

6.4. An application: compact operators

Many applications such as the solution of elliptic boundary value problems
by the integral equation method require the solution of second-kind Fred-
holm equations, that is, operator equations (1.1) in which A has the form
A = λI + K with λ �= 0 and K : H → H is a compact operator. The devel-
opment of fast multiplication algorithms (cf. Greengard and Rokhlin (1987),
Hackbusch and Nowak (1989)) has made Krylov subspace methods attract-
ive as solution algorithms for discretizations of these problems, since they
require only applications of the (discrete) operator to vectors. Moreover, as
shown by Moret (1997) for GMRES and by Winther (1980) for CG, Krylov
subspace methods converge q-superlinearly for operator equations involving
compact perturbations of (multiples of) the identity.

The reason for this is that, for these operators, the sines sm of the canon-
ical angles between the Krylov space Km and AKm converge to zero. To
show this, we recall a basic result on compact operators and orthonormal
systems.

Theorem 6.10. Let K : H → H be a compact linear operator and
{vm}m≥1 ⊂ H be an orthonormal system. Then

lim
m→∞

(Kvm, vm+1) = 0.
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Proof. See, for example, Ringrose (1971). �

The next lemma, which is due to Moret (1997), gives a bound on the
quantity sm = sin ∡(Km, AKm).

Lemma 6.11. Let {vj}j≥1 be the Arnoldi basis defined in (5.11) of Km,
where A : H → H possesses a bounded inverse. Then

sm ≤ ‖A−1‖ (vm+1, Avm).

Proof. Let {w1, . . . ,wm} denote an ascending orthonormal basis of AKm.
Since A−1wm ∈ Km, we can write (vm+1,wm) = (vm+1, APKm

A−1wm).
Moreover, since Avj ∈ Km ⊥ vm+1 for 1 ≤ j ≤ m− 1, we have

|(vm+1, APKm
A−1wm)| = |(vm+1,

m∑

j=1

(A−1wm, vj)Avj)|

= |(vm+1, (A
−1wm, vm)Avm)|

= |(A−1wm, vm)(vm+1, Avm)|
≤ ‖A−1‖ (Avm, vm+1).

Note that the modulus in |(Avm, vm+1)| can be omitted since (Avm, vm+1) =
‖(I − PVm

)Avm‖ ≥ 0. The assertion now follows from Lemma 3.3. �

Corollary 6.12. Let A = λI + K with λ �= 0 and K : H → H compact,
let {vj}j≥1 denote the Arnoldi basis of Km. Then the sines sm of largest
canonical angle between Km and AKm form a null sequence.

Proof. Lemma 6.11 and Theorem 6.10 yield

sm ≤ (vm+1, Avm) ‖A−1‖ = (vm+1,Kvm) ‖A−1‖ → 0,

since A−1 is bounded whenever λ �= 0. �

In particular, since sm → 0 implies that sm < 1 for m sufficiently large,
this means that the OR approximation is always defined except for possibly
a finite number of indices. Moreover, as sm is bounded away from one, cm is
accordingly bounded away from zero, hence the relation (3.16) also implies
the q-superlinear convergence of the OR approximation. We summarize this
result in the following theorem.

Theorem 6.13. Given K : H → H compact, 0 �= λ ∈ C and b ∈ H, let
x0 ∈ H be an initial guess at the solution of (1.1) with A = λI + K. Then
the OR approximation with respect to the space Km exists for all sufficiently
large m. Moreover, the sequence of MR and OR approximations converge
q-superlinearly.
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We remark that the rate of superlinear convergence may be quantified in
terms of the rate of decay of the singular values of K (see Moret (1997)).
We also note, in view of (4.24), that this result applies to all MR/OR pairs
of Krylov subspace methods including QMR/BCG, given a bound on the
conditioning of the basis of the Krylov space being used. For bases generated
by the look-ahead Lanczos method such bounds are guaranteed, for instance,
by the implementation given in Freund (1993).

7. Conclusions and final remarks

We have presented a unifying framework for describing and analysing Krylov
subspace methods by first introducing the abstract MR and OR approxim-
ation methods on nested sequences of subspaces, applying these to solv-
ing equations and then specializing further to the Krylov subspace setting.
All known relations between MR/OR-type Krylov methods were shown to
hold in the abstract formulation. In particular, the angles appearing in
the Givens QR factorization of the Hessenberg matrix used in many Krylov
subspace algorithms were identified as angles between the Krylov spaces
and their images under A. Moreover, depending on whether orthogonal or
non-orthogonal bases are employed, both MR/OR and QMR/QOR meth-
ods can be described and analysed in the same manner. Furthermore, we
have shown that essentially all nested approximation schemes – and there-
fore also essentially all Krylov subspace methods – can be interpreted as
QMR/QOR methods. The description of the algorithms in terms of angles
was subsequently used to derive some of the previously known error and
residual bounds.

Another benefit of the analysis in this paper is that, at least conceptually,
it separates the issue of generating bases from the method for computing
the approximations. Indeed, other algorithms besides Lanczos or Arnoldi
could be used to generate the bases required for the MR and OR methods,
but this is seldom done for lack of promising alternatives: Le Calvez and
Saad (1999) introduce a nonstandard inner product and develop a QMR-like
algorithm not based on the Lanczos algorithm.

Besides the basis-dependent inner product of QMR/QOR approximations,
it can also be advantageous to use other fixed inner products other than the
Euclidean inner product on the coordinate space. For an example of a non-
standard inner product used in conjunction with GMRES see Starke (1997).

We have made no mention in this paper of preconditioning, which is in-
dispensable for most problems of practical relevance; when preconditioning
is accounted for, our results apply to the preconditioned system.

We believe that our approach provides a simple and intuitive way of de-
scribing Krylov subspace algorithms which simplifies many of the standard
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proofs and brings out the connections among the many algorithms in the
literature.
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